In the modern day on-board power the Intermediate Bus Architecture (IBA) is the most widely used approach. The
input AC
or DC input voltage is converted to and Intermediate Bus Voltage (IBV). By far the most popular for IBV is
12V.
The IBV is distributed through the on-board power system and further converted to the desired low voltage.
The switching regulator employed for this conversion is called Point of Load (POL) converter. The POL is usually
implemented by using non-isolated Buck topology. The Buck based POLs do not have input to output isolation. This
means
that the input and the output grounds are not isolated. The desired rail voltage is achieved by means of Pulse
Width
Modulation (PWM).
The POL converter has 2 power switches Q1 and Q2 alternatively turn on and off. The upper switch Q1 turns on for time
duration determined by PWM control circuit. This voltage pulse is further averaged across the Lo-Co to produce
desired
output voltage according to equation:
is duty cycle
Image 1: Buck Point-of-load Schematic.
In order to get a better understanding of how this converter operates it is very useful to review and analyze the
most
important waveforms:
One of the important observations is that the input current drawn by converter is approximately rectangular with a
very
fast rise and fall times. If not taken proper care the resultant ripple voltage pulses could upset normal operation
of
local and other converters connected to the same IBV source. In addition the current pulses are also a source of
wide
spectrum EMI. It is obvious that the input filter is needed to take care of these problems.
Image 3: Buck input current waveform.
The filtering can be accomplished by adding low-ESR capacitors to the input of the
converter.
The input current drawn by converter has AC and DC components. The DC component is the average current drawn from the
IBV source and can be approximated by equation:
The AC portion of the input current during the upper switch Q1 on is difference between the output peak current and
the
input average current:
During the switch Q1 Off the input capacitor is charging with the average input current:
Combining these two expressions we can derive the expression for the RMS current through the input capacitor by
taking
square root of sum of the and portions charging and discharging of
capacitor:
Since capacitors have ESR, AC current passing through them gives rise to self-heating, and hence limits the amount of
AC
current that can pass through the capacitor with given ESR and size of the package:
As a typical example we can take a converter with the following parameters:
Then the duty cycle:
, and
The 330µF, 16V T521 Series High Voltage Polymer Tantalum capacitor has Ripple Current rating 3.1A and ESR = 25mΩ.
This
means that 2 capacitors in parallel are necessary to handle 6A current. As one can see from the graph the maximum
RMS
current is at the duty cycle D = 0.5. With low output voltages, the Iinrms is relatively low, but at the same time
the
input capacitor discharging current Ic- is high. With the conditions in example above:
This ripple voltage has sharp transitions and is very difficult to filter. One of the options is to implement the L-C
input filter. Another way is to use multiphase interleaved converters.
The input RMS current is going to be reduced as it is shown in Image 4:
Image 4: Input current vs duty ratio.
In order to reduce stress on the electrolytic capacitor and inductive spike, caused the parasitic inductance of
electrolytic capacitor, it is always necessary to bypass the electrolytic with the ceramic capacitor.
It is also important to estimate voltage ripple across the input capacitors due to the ESR
component:
; and the
To calculate the size of the inductor we assume that the IBV end of the voltage is fixed.
Then the voltage across inductor can be estimated as:
the value of inductor L is calculated based on desired dl value:
The addition of the input filter to converter will provide control of the input ripple but at the same time can cause
the input filter to become unstable and oscillate due to “negative input resistance” of the converter.
Let’s take a look what’s this “negative input resistance” all about. The main function of all “regulators” is to
maintain predetermined output parameters (voltage, current, power, etc) regardless of changing input conditions. For
example, in case of Linear Regulators, in order to maintain an output voltage they keep the input current constant
and
the input power raises linearly with the rising input voltage.
This means that the input resistance is positive. In case of switching regulators, the converter draws almost
constant
input power. This means that the input current is decreased with increasing input voltage and vice versa.
Because
;
and
The following graph shows with respect to and :
Image 5: Input current vs input voltage.
This phenomenon was extensively analyzed by Professor of Caltech, Dr. R. D. Middlebrook. He showed that at certain
conditions the converter operation can become unstable because of the input filter and converter interactions. His
research led to conclusion that in order to avoid this to happen, the output impedance of the input filter should be
lower than the open loop input impedance of the converter, i.e:
This expression is referred as the Middlebrook Criterion. At low frequencies the impedance
is calculated at the lowest input voltage and at maximum output load condition:
And critically damped input filter output impedance is:
The following graph shows approximately how the impedances of the converter and the
input filter should be separated.
Image 6: Input impedance vs frequency.
The separation can further enhanced by introducing the damping resistor. One way of doing it is shown in Image 1 and
is
known as parallel damping.
For critical damping the and are selected:
, and damping capacitor
The real on-board power system is usually comprised of several converters connected to the same IBV source. The
interconnection, layout and additional filter components create a very complicated task to solve it analytically. It
is
therefore very practical to use SPICE to analyze this circuit. Multiple modules should be connected to the common
IBV
source through the corresponding circuit and parasitic elements.
Image 7: The SPICE Circuit
The SPICE circuit in Image 7 represents the single Buck regulator input section.
The current source I1 is a current Pulse with the parameters determined by the actual switching regulator, with the
following parameters:
- I1 pulse from 0 to Io
- Pulse rise time tr = 1nsec
- Pulse fall time tf = 1nsec
- Pulse duration
- Switching Period 2µs for switching frequency 500 kHz
View Bel's selection of chokes, coils, and inductors
Learn More