## ORQP-H5T12 Isolated DC-DC Converter

These units are designed to be highly efficient and low cost. Features include remote on/off, short circuit protection, over current protection, under-voltage lockout, over temperature protection, power management bus and so on.

The output of the converters has the droop function which allow the modules operating in parallel with high output current sharing precision. These converters are provided in an industry standard quarter brick package.

### **Key Features & Benefits**

- 36 75 VDC Input
- 12 VDC @ 54.2 A Output
- 1/4<sup>th</sup> Brick Converter
- Fixed Frequency
- High Efficiency
- Input Under-Voltage Lockout
- Input Over-Voltage Lockout
- OCP/SCP
- Over Temperature Protection
- Over Voltage Protection
- Power Management Bus
- TRIM
- Remote Sense
- Approved to UL/CSA 62368-1
- Approved to IEC/EN 62368-1
- Approved to IEC/EN 60950-1
- Class II, Category 2, Isolated DC-DC Converter (refer to IPC-9592B)

### **Applications**

- Industrial
- Telecommunications





Compliant



## 1. MODEL SELECTION

| MODEL<br>NUMBER | OUTPUT VOLTAGE      | INPUT<br>VOLTAGE | MAX. OUTPUT<br>CURRENT | MAX. OUTPUT<br>POWER | TYPICAL<br>EFFICIENCY      |
|-----------------|---------------------|------------------|------------------------|----------------------|----------------------------|
| 0RQP-H5T12AG    | 9 - 12.6 VDC (Power |                  |                        |                      | a= aa( o                   |
| 0RQP-H5T12BG    | Management Bus and  | 36 – 75 VDC      | 54.2 A                 | 650 W                | 95.8% @<br>48 Vin / 54.2 A |
| 0RQP-H5T12PG    | Trim, Sense)        |                  |                        |                      | 40 VIII / J4.2 A           |

### PART NUMBER EXPLANATION

| 0                     | R              | QP              | - H5            | Т              | 12                | X                              | G               |
|-----------------------|----------------|-----------------|-----------------|----------------|-------------------|--------------------------------|-----------------|
| Mounting<br>Type      | RoHS<br>Status | Series Name     | Output<br>Power | Input<br>Range | Output<br>Voltage | Logic and Optional Features    | Package<br>Type |
|                       |                | with Power      |                 |                |                   | A - Active High, without Droop | -               |
| Through Hole<br>Mount | RoHS           | Management Bus  | 650 W           | 36 – 75 V      | 12 V              | B - Active Low, without Droop  | Tray<br>Package |
|                       |                | and Trim, Sense |                 |                |                   | P - Active Low, with Droop     |                 |

### 2. ABSOLUTE MAXIMUM RATINGS

| PARAMETER             | DESCRIPTION                       | MIN  | ТҮР | MAX  | UNITS |
|-----------------------|-----------------------------------|------|-----|------|-------|
|                       | Continuous                        | -0.3 | -   | 75   |       |
| Input Voltage         | Operating transient $\leq$ 100 ms | -    | -   | 100  | V     |
|                       | Non- operating continuous         | 85   | -   | 100  |       |
| Remote On/Off         |                                   | -0.3 | -   | 18   | V     |
| Current Sink          |                                   | 0    | -   | 10   | mA    |
| Isolation Voltage     | Input to output                   | -    | -   | 2250 | V     |
| Operating Temperature | Ambient temperature               | -40  | -   | 85   | °C    |
| Storage Temperature   |                                   | -55  | -   | 125  | °C    |
| Altitude              |                                   | -    | -   | 5000 | m     |

**NOTE:** Ratings used beyond the maximum ratings may cause a reliability degradation of the converter or may permanently damage the device.

### 3. INPUT SPECIFICATIONS

All specifications are typical at 25°C unless otherwise stated.

| PARAMETER                                 | DESCRIPTION                    | MIN | TYP | MAX | UNIT |
|-------------------------------------------|--------------------------------|-----|-----|-----|------|
| Operating Input Voltage                   | Vin                            | 36  | 48  | 75  | V    |
| Input Current (full load)                 | lin                            | -   | -   | 20  | А    |
| Input Current (no load)                   |                                | -   | 150 | 180 | mA   |
| Remote Off Input Current                  |                                | -   | 15  | 20  | mA   |
| Input Reflected Ripple Current is (rms)   | Vin = 48 V. lo= lo max         | -   | 20  | -   | mA   |
| Input Reflected Ripple Current is (pk-pk) | $v_{11} = 46 v, 10 = 10 max$   | -   | 60  | -   | mA   |
| Under-voltage Turn on Threshold           | Lockout turn on                | 33  | 35  | 36  | V    |
| Under-voltage Turn off Threshold          | Lockout turn off, non-latching | 31  | 33  | 35  | V    |

CAUTION: This converter is not internally fused. An input line fuse must be used in application. Recommended input fast-acting fuse on system board.

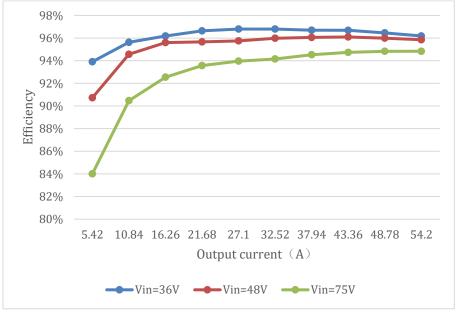


### 4. OUTPUT SPECIFICATIONS

All specifications are typical at nominal input, full load at 25°C unless otherwise stated.

| PARAMETER                         | DESCRIPTION                                                                                                             | MIN   | ΤΥΡ   | MAX   | UNI<br>T |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------|-------|-------|----------|
| Output Voltage Set Point          | Test condition of the output set point: Vin = 48 V, $Io = 50\%$ load at 25°C ambient                                    | 11.97 | 12.00 | 12.03 | V        |
|                                   | (Over entire operating input voltage range, resistive load, and temperature conditions until end of life) without droop | 11.76 | 12.00 | 12.24 | V        |
| Output Voltage Regulation         | (Over entire operating input voltage range, resistive load, and temperature conditions until end of life) with droop    | 11.63 | 12.00 | 12.37 | v        |
| Output Voltage Regulation         |                                                                                                                         |       |       |       |          |
| Load Regulation                   | lo = 0~100% load (without droop)                                                                                        | -     | 20    | 40    | mV       |
| LOAD Regulation                   | Io = 0~100% load (with droop)                                                                                           | -     | 500   | -     | mv       |
| Line Regulation                   | Vin = 36~75 V                                                                                                           | -     | 20    | 60    | mV       |
| Regulation Over Temperature       |                                                                                                                         | -     | 150   | 200   | mV       |
| Output Ripple and Noise (pk-pk)   | Vin = 48 V, lo = 100% load at 25°C ambient, 5 Hz - 20 MHz BW,                                                           | -     | 250   | 350   | mV       |
| Output Ripple and Noise (rms)     | 180 μF/16 V (OS-CON) + 120 μF/16 V (OS-CON) +1 μF/16 V<br>(Ceramic)                                                     | -     | 80    | 120   | mV       |
| Output Current Range              |                                                                                                                         | 0     | -     | 54.2  | А        |
| Output DC Current Limit           | Hiccup mode                                                                                                             | 63    | 65    | 67    | А        |
| Rise Time                         | Trise = Time for Vo to rise from 10% to 90% of Vo,set                                                                   | -     | 25    | -     | ms       |
|                                   | Tdelay = Time until Vo = 10% of Vo,set Enable with Vin                                                                  | -     | 20    | 35    |          |
| Turn-On Delay                     | Tdelay = Time until Vo = 10% of Vo,set Enable with on/off                                                               | -     | 20    | 35    | ms       |
| Overshoot at Turn on              |                                                                                                                         | -     | 0     | 3     | %        |
| Undershoot at Turn off            |                                                                                                                         | -     | 0     | 3     | %        |
| Output Capacitance                |                                                                                                                         | 300   | -     | 10000 | μF       |
| Transient Response                |                                                                                                                         |       |       |       |          |
| ∆V 50%~75% of Max Load            |                                                                                                                         | -     | 350   | -     | mV       |
| Settling Time                     | di/dt = 0.1 A/ $\mu$ s, Vin = 48 VDC, Ta = 25°C, Tested with a                                                          | -     | 700   | -     | μs       |
| $\triangle V$ 75%~50% of Max Load | 180 μF/16 V (OS-CON) + 120 μF/16 V (OS-CON) +1 μF/16 V<br>(Ceramic)                                                     | -     | 350   | -     | mV       |
| Settling Time                     |                                                                                                                         | -     | 700   | -     | μs       |
|                                   |                                                                                                                         |       |       |       |          |




 Asia-Pacific
 Europe, Middle East
 North America

 +86 755 298 85888
 +353 61 49 8941
 +1 866 513 2839

## 5. GENERAL SPECIFICATIONS

| PARAMET      | ER                      | DESCRIPTION                     | MIN  | ΤΥΡ                     | MAX   | UNIT |
|--------------|-------------------------|---------------------------------|------|-------------------------|-------|------|
| Efficiency   | lo = 100% Irate         | Vin = 48 V, Ta = 25 °C          | -    | 95.8                    | -     | %    |
| Linclency    | lo = 60% Irate          | VIII = 40 V, 14 = 23 O          | -    | 96                      | -     | %    |
| Switching F  | requency                |                                 | -    | 260                     | -     | kHz  |
| Over Tempe   | erature Protection      |                                 | -    | 135                     | -     | °C   |
| Output Volt  | age Trim Range          | For all operating input voltage | 9    | -                       | 12.6  | V    |
| Over Voltag  | e Protection (Static)   | Latching mode                   | -    | 13.5                    | -     | V    |
| Weight       |                         |                                 | -    | 74                      | -     | g    |
| Dimonoiono   | $(L \times W \times H)$ |                                 | 2.   | 2.30 x 1.45 x 0.53 inch |       |      |
| Dimensions   | s (∟ × vv × ⊓)          |                                 | 58.4 | 2 x 36.83 x             | 13.50 | mm   |
| Isolation (  | Characteristics         |                                 |      |                         |       |      |
| Input to Out | tput                    |                                 | -    | -                       | 2250  | VDC  |
| Input to Hea | atsink                  |                                 | -    | -                       | 2250  | VDC  |
| Output to H  | leatsink                |                                 | -    | -                       | 500   | VDC  |
| Isolation Re | esistance               |                                 | 10M  | -                       | -     | Ohm  |
| Isolation Ca | apacitance              |                                 | -    | -                       | 3300  | pF   |

### 6. EFFICIENCY DATA



#### Figure 1. Efficiency data



### 7. REMOTE ON/OFF

| PARAMETER              |                | DESCRIPTION                                  | MIN  | TYP | MAX | UNIT |
|------------------------|----------------|----------------------------------------------|------|-----|-----|------|
| Signal Low (Unit On)   | Active Low     | Remote On/Off pin is open, the module is off | -0.3 | -   | 0.8 | V    |
| Signal High (Unit Off) | Active Low     |                                              | 2.4  | -   | 18  | V    |
| Signal Low (Unit Off)  | A ativa I linh | Demote On (Off nin is onen the medule is on  | -0.3 | -   | 0.8 | V    |
| Signal High (Unit On)  | Active High    | Remote On/Off pin is open, the module is on  | 2.4  | -   | 18  | V    |
| Current Sink           |                |                                              | 0    | -   | 1   | mA   |

#### Recommended remote on/off circuit for active low

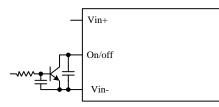



Figure 2. Control with open collector/drain circuit

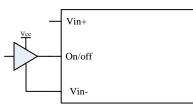



Figure 4. Control with logic circuit

#### Recommended remote on/off circuit for active high

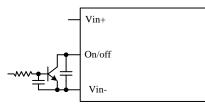



Figure 6. Control with open collector/drain circuit

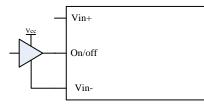



Figure 8. Control with logic circuit

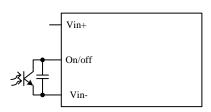



Figure 3. Control with photocoupler circuit

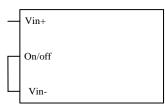



Figure 5. Permanently on

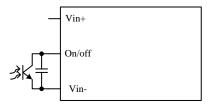



Figure 7. Control with photocoupler circuit

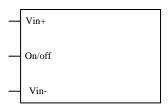
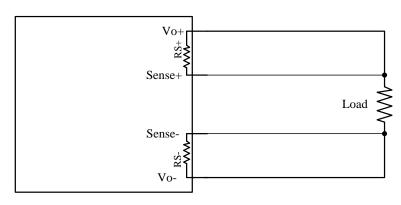



Figure 9. Permanently on



 Asia-Pacific
 Europe, Middle East
 North America


 +86 755 298 85888
 +353 61 49 8941
 +1 866 513 2839

BCD.20092\_AL

### 8. REMOTE SENSE

This module has remote sense compensation feature. It can minimize the effects of resistance between output and load in system layout and facilitate accurate voltage regulation at load terminals or other selected point.

1. Recommend the connection of remote sense compensation as below figure. There are a resistor RS+ (100 ohm) from Vo+ to Sense+ and a resistor RS- (100 ohm) from Vo- to Sense- inside of this module.





2. If not using remote sense compensation, please connect sense directly to output at module's pin, that is, connect sense+ to Vo+ and sense- to Vo- at module's pin, the shorter the better. See below figure.

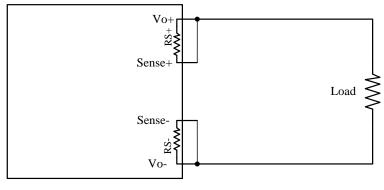



Figure 11.



### 9. INPUT NOISE

Input reflected ripple current Test setup

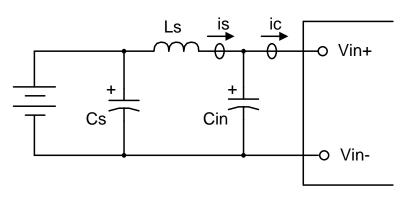



Figure 12.

Notes and values in testing:

is: Input Reflected Ripple Current

ic: Input Terminal Ripple Current

Ls: Simulated Source Impedance (10  $\mu$ H)

Cs: NIL

Cin: Electrolytic capacitor, should be as close as possible to the power module to damp ic ripple current and enhance stability. Recommendation: 220  $\mu$ F, ESR < 0.1  $\Omega$  @ 100 kHz, 20°C.

Below measured waveforms are based on above simulated and recommended inductance and capacitance.

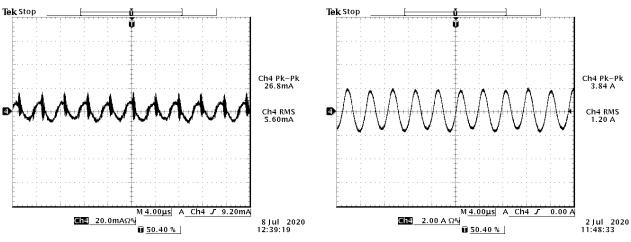



Figure 13. is (input reflected ripple current), AC component

Figure 14. ic (input terminal ripple current), AC component

Test condition: 48 VDC input, 12 VDC / 54.2 A output and Ta = 25 °C.



 Asia-Pacific
 Europe, Middle East
 North America

 +86 755 298 85888
 +353 61 49 8941
 +1 866 513 2839

7

### **10. RIPPLE AND NOISE WAVEFORM**

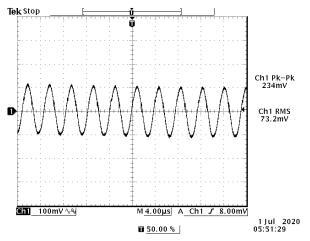



Figure 15. Ripple and noise waveform

Note: 48 VDC input, 12 VDC / 54.2 A output and Ta = 25 °C, 180  $\mu$ F/16 V (OS-CON) + 120  $\mu$ F/16 V (OS-CON) +1  $\mu$ F/16 V (Ceramic).

### **11. TRANSIENT RESPONSE WAVEFORMS**

Transient Response test condition: di/dt = 0.1 A/ $\mu$ s, 180  $\mu$ F/16 V (OS-CON) + 120  $\mu$ F/16 V (OS-CON) + 1  $\mu$ F/16 V (Ceramic). CHI: Vout, CH2: Vout

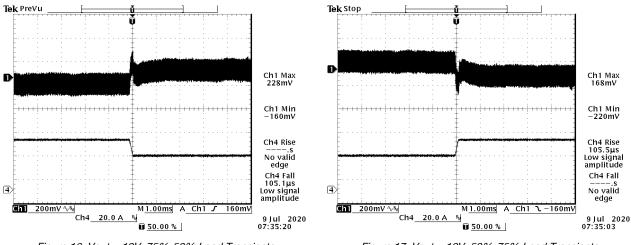



Figure 16. Vout = 12V, 75%-50% Load Transients at Vin = 48 V, Ta = 25°C

Figure 17. Vout = 12V, 50%-75% Load Transients at Vin = 48 V, Ta = 25°C



### **12. STARTUP & SHUTDOWN**



Shutdown

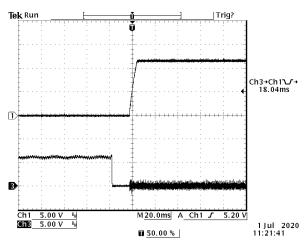



Figure 18. 48 VDC input, 12 VDC / 54.2 A output and Ta = 25 °C, 300  $\mu$ F (OS-CON) +1  $\mu$ F (Ceramic) CH1: Vout, CH3: Remote on/off (Active low)

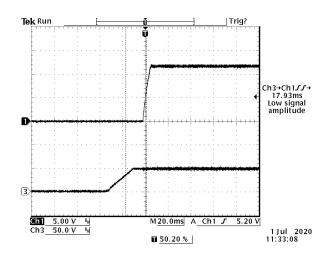
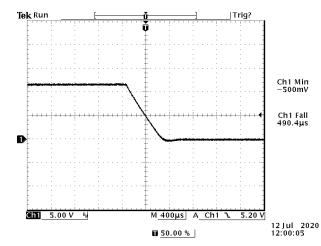
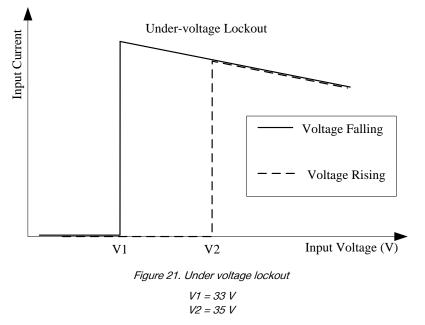




Figure 19. 48 VDC input, 12 VDC / 54.2 A output and Ta = 25 °C, 300 μF (OS-CON) +1 μF (Ceramic) CH1: Vout, CH3: Vin








 Asia-Pacific
 Europe, Middle East
 North America

 +86 755 298 85888
 +353 61 49 8941
 +1 866 513 2839

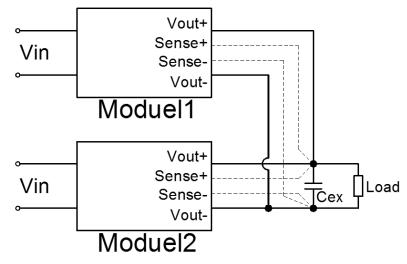
9

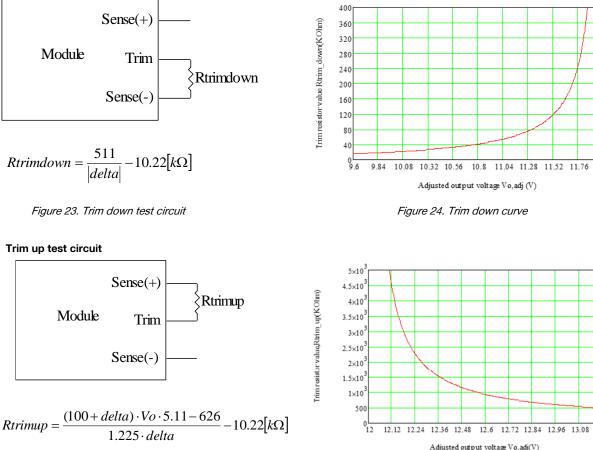
## **13. UNDER VOLTAGE LOCKOUT**

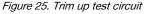


### **14. OUTPUT CURRENT SHARE**

Two or more 0RQP-H5T12P modules can be connected to implement the current share function as shown in below figure. In this application, it is necessary to connect the remote sense pin to load point from each module to ensure a balanced output current.





Figure 22. Output current share




Trim down test circuit

### **15. OUTPUT TRIM EQUATIONS**

Equations for calculating the trim resistor are shown below. The Trim Down resistor should be connected between the Trim pin and Sense (-) pin. The Trim Up resistor should be connected between the Trim pin and the Sense (+). Only one of the resistors should be used for any given application.







Vo\_req = Desired (trimmed) output voltage [V].

Output voltage Vo = 12 V.

#### Note:

1. The trim used the VOUT\_COMMAND of Power Management Bus and the trim used the function of trim pin (6 pin) cannot be used at the same time.

2. If use VOUT\_COMMAND of Power Management Bus to trim Vout set point, then the function of trim pin (6 pin) will be disabled immediately. And if need enable the function of trim pin(6pin) to trim Vout set point again, should turn off and turn on the input voltage of module to restart module.



$$[k\Omega] = \frac{500}{0} \frac{12}{12} \frac{12.12}{12.24} \frac{12.36}{12.48} \frac{12.6}{12.72} \frac{12.84}{12.96} \frac{12.96}{13.08} \frac{13.2}{13.2}$$

$$Adjusted output voltage Vo, adj(V)$$

$$Figure 26. Trim up curve$$

$$delta = \frac{(Vo - req - Vo)}{Vo} \times 100[\%]$$

 Asia-Pacific
 Europe, Middle East
 North America

 +86 755 298 85888
 +353 61 49 8941
 +1 866 513 2839

12

© 2021 Bel Power Solutions & Protection

### **16. THERMAL DERATING CURVES**

#### **Thermal Considerations:**

New high power architectures require an accurate thermal design. Design engineers have to optimize the module working conditions and ensure reliable operation. Convection cooling is the common mode to cool down the module. Heat transfer is dependent on a test setup and it is important to characterize the module in an environment similar to existent electronic applications. Reported thermal data reflects real operating conditions because the values are physically measured in a wind tunnel.

#### Thermal Test Setup:

A module in electronic cards is typically located in a busy area without relevant space around it.

To simulate a real condition and avoid turbulence we add a cover with defined dimensions.

The distance has to be 6.35 mm (0.25 inch) from the top of the module and 6.35 mm (0.25 inch) on the left and right side of the module.

The values reflect most of the real applications and it is a common procedure in the power module market.

Ambient temperature and airflow are measured in front of the module at the distance of 76.2 mm (3 inch).

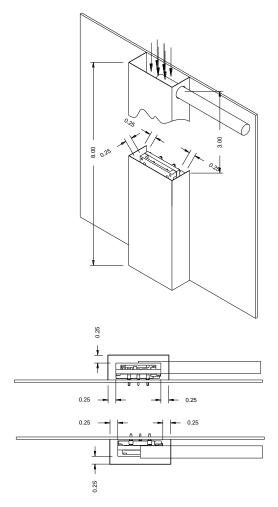



Figure 27. Thermal test setup

Test setup drawing all measures in inch.



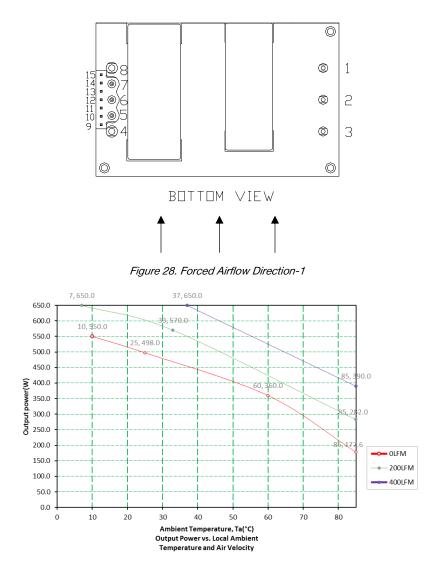



Figure 29. Derating curve @Vin = 48 V

Note: Output power vs. ambient temperature and air velocity @ Vin = 48 V (Longitudinal Orientation, airflow from Vin(-) to Vin(+)).



 Asia-Pacific
 Europe, Middle East
 North America

 +86 755 298 85888
 +353 61 49 8941
 +1 866 513 2839

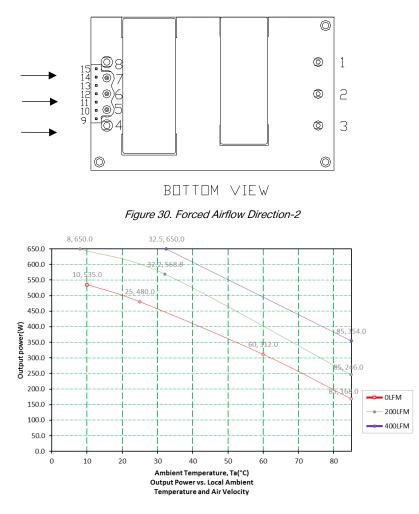


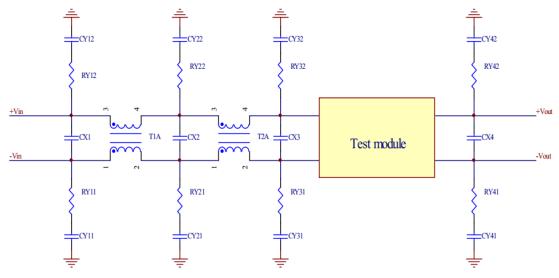

Figure 31. Derating curve @Vin = 56 V

Note: Output power vs. ambient temperature and air velocity @ Vin = 56 V (Longitudinal Orientation, airflow from Vout to Vin).



### 17. SAFETY & EMC

#### Safety:


- 1. Approved to IEC/EN 60950-1
- 2. Approved to IEC/EN 62368-1
- Approved to UL/CSA 62368-1 3.

#### EMC:

Conductive EMI: EN 55032 class A

Compliance to EN 55032 class A (both peak and average) with the following inductive and capacitive filter Test condition: Vin = 48 V Full Load

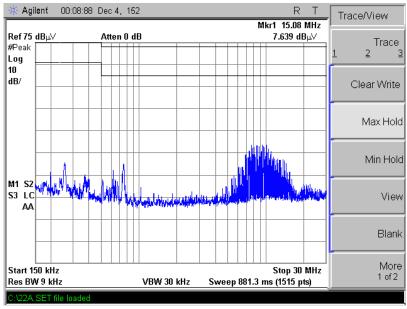
#### Test Setup:





| Item | Designator          | Parameter                                                     | Vendor    | Vendor P/N         |
|------|---------------------|---------------------------------------------------------------|-----------|--------------------|
| 1    | CX2                 | AL-EL CAP 220UF 20% 100V UHE2A221MHD6<br>Lead Type            | Nichicon  | UHE2A221MHD6       |
| 2    | CX3                 | AL-EL CAP 220UF 20% 100V UHE2A221MHD6<br>Lead Type            | Nichicon  | UHE2A221MHD6       |
| 3    | T2A                 | C20200-15 1.2mH 0.006Ωmax Irate=16Amax                        |           |                    |
| 4    | T1A                 | SHORT                                                         |           |                    |
| 5    | CX4                 | POLYMER AL SOLID CAP 1200µF+/-20% 16V -<br>55 to +105C 8X20mm | chemi-com | APSG160ELL122MH20S |
| 6    | CY31,CY32,CY41,CY42 | CAP Y2 4700PF +/-20% 250VAC 7.5mm                             | vishay    | VY2472M41Y5VS6UV7  |
| 7    | All resister        | SHORT                                                         |           |                    |
| 8    | CX1                 | NIL                                                           |           |                    |




Asia-Pacific Europe, Middle East North America +86 755 298 85888 +353 61 49 8941

+1 866 513 2839

© 2021 Bel Power Solutions & Protection

BCD.20092\_AL

#### Positive:





Negative:

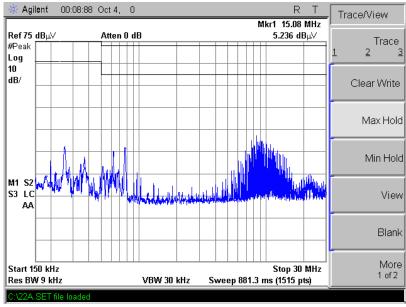



Figure 34.



### **18. POWER MANAGEMENT BUS**

#### POWER MANAGEMENT BUS DIGITAL FEATURE DESCRIPTION

The module supports Power Management Bus to allow to be monitored, controlled and configured by the system. More detailed Power Management Bus information can be found in the Power Management Bus Power Management Protocol Specification, Part I and part II, revision 1.3, which is shown in the System Management Interface Forum Web site: www.powerSIG.org. The supported Power Management Bus commands of the module are listed below in the supported POWER MANAGEMENT BUS COMMANDS section.

The module supports four Power Management Bus signal lines: PMBDATA, PMBCLK, SMBALERT (optional), Control (C2 pin, optional), and two Address lines: Addr0 and Addr1.

Connection for the Power Management Bus interface should follow the High-Power DC specifications given in section 3.1.3 in the SMBus specification V2.0 or the Low Power DC specifications in section 3.1.2. The complete SMBus specification is shown in http://smbus.org.

SMBALERT protocol is supported. SMBALERT line is also a wired-AND signal, by which the module can alert the Power Management Bus master via pulling the SMBALERT pin to an active low to indicate a fault condition. The master will communicate with the slave module using the programmed address and use the various READ\_STATUS commands to find the cause for the SMBALERT. The CLEAR\_FAULTS command will clear the SMBALERT.

The module also supports the Packet Error Checking (PEC) protocol. It can check the PEC byte provided by the Power Management Bus master and include a PEC byte in all messages transmitted back to the master.

#### POWER MANAGEMENT BUS ADDRESSING

The Module has flexible POWER MANAGEMENT BUS addressing capability. When connect different resistor from Addr0 and Addr1 pin to DGND pin, 64 possible addresses can be acquired. The address is in the form of octal digits; Each pin offers one octal digit, and then combine together to form the decimal address as shown in below.

#### Address = 8 \* ADDR1 + ADDR0

Corresponded to each octal digit, the requested resistor values are shown below, and +/-1% resistors accuracy can be accepted. If there are any resistances exceeding the requested range, address 64 will be return. 0-12 and 40, 44, 45, and 55 in decimal address cannot be used, since they are reserved according to the SMBus specifications, and which will also return address 16.

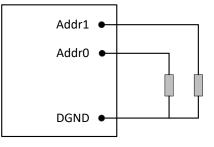
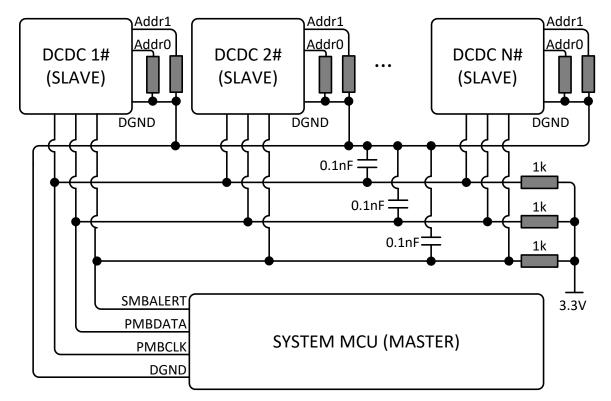



Figure 35.


| Octal Digit | Resistor (Kohm) |
|-------------|-----------------|
| 0           | 10              |
| 1           | 15.4            |
| 2           | 23.7            |
| 3           | 36.5            |
| 4           | 54.9            |
| 5           | 84.5            |
| 6           | 130             |
| 7           | 200             |

#### NOTE:

- 1. Power Management Bus communication is only supported when vin normal and remote on
- 2. If boot load function is needed, there can not be an I2C slave address of 0x58 on I2C bus

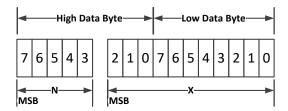


17



#### POWER MANAGEMENT BUS APPLICATION CIRCUIT

Figure 36. Power Management Bus Application Circuit


| PARAMETER                                      | NOTES | MIN | NOM     | MAX  | UNITS |
|------------------------------------------------|-------|-----|---------|------|-------|
| Logic Input Low (VIL)                          | 1     | 0   |         | 0.8  | V     |
| Logic Input High (VIH)                         | 1     | 2.1 |         | 3.3  | V     |
| Logic Output Low (VOL)                         | 2     |     |         | 0.65 | V     |
| Logic Output High (VOH)                        | 3     | 2.3 |         |      | V     |
| Power Management Bus Operating Frequency Range |       |     | 100/400 |      | kHz   |
| Output Ourrant Deading Assurage                | 4     | -5  |         | +5   | %     |
| Output Current Reading Accuracy                | 5     | -3  |         | +3   | А     |
| Output Voltage Reading Accuracy                |       | -2  |         | +2   | %     |
| Input Voltage Reading Accuracy                 |       | -4  |         | +4   | %     |
| Temperature Reading Accuracy                   |       | -5  |         | +5   | °C    |
| Notes                                          |       |     |         |      |       |
|                                                |       |     |         |      |       |

- 1 PMBDATA, PMBCLK pin
- 2 PMBDATA, SMBAlert, PMBCLK pin; IOL = 4 mA
- 3 PMBDATA, SMBAlert, PMBCLK pin; IOH = -4 mA
- 4 Vin = 54 V, lo = 50% ~ 100% of lomax;
- 5 Vin = 54 V, Io = 5% ~ 50% of Iomax;



#### POWER MANAGEMENT BUS DATA FORMAT

For commands which is except to the output voltage, including input voltage, output current, temperature, PWM frequency, duty cycle, the controller will use the 2-byte linear format as defined by the Power Management Bus system management protocol. The linear data format contains 2 bytes which include a 5-bit two's complement exponent and an 11-bit two's complement mantissa as below. The transmitted value Y is reported as the form  $Y = X^*2^N$ .



For example, to set the over temperature fault threshold 135 deg C by OT\_FAULT\_LIMIT command, the read/write data can be calculated refer to below: the binary number of N is 0, whose decimal number is 0.

X = TOTP/2(0) = 135, whose binary is 0b00010000111.

Combine X and N, the binary is 0b000000010000111. The hexadecimal of OT\_FAULT\_LIMIT is 0x0087.

The output voltage parameters use the Power Management Bus Vout linear format. The data format is shown below.



The voltage will be in the form Voltage =  $V^{2N}$ . The Mantissa and exponent in this equation will be read and reported using 3 bytes. The first byte is the VOUT\_MODE byte which will always contain 000 in the 3 MSB's. The 5 LSB's are the exponent. The exponent N is fixed and equals -10. The other 2 bytes N will contain the Mantissa. In the above format N is a 5-bit two's complement binary integer and V is a 16-bit unsigned binary integer. All 16 bits are reported to be compatible with the Power Management Bus protocol.

For example, to set Vout to 12V by VOUT\_COMMAND, the read/write data can be calculated refer to below process:  $V = Vout/2^{(-10)} = 12/2^{(-10)} \approx 12288$ 

Convert the decimal to hexadecimal format is 0x3000. So the VOUT\_COMMAND is 0x3000.



**Asia-Pacific** +86 755 298 85888 Europe, Middle East +353 61 225 977 North America +1 408 785 5200

© 2021 Bel Power Solutions & Protection

#### SUPPORTED POWER MANAGEMENT BUS COMMANDS

The main Power Management Bus commands described in the Power Management Bus 1.3 specification are supported by the module. Partial Power Management Bus commands are fully supported; Partial Power Management Bus commands have difference with the definition in Power Management Bus 1.3 specification. All the supported Power Management Bus commands are detailed summarized in the below table.

| COMMAND                | CODE | COMMAND DESCRIPTION                                                                                                | TYPE         | DATA<br>FORMAT     | DEFAULT<br>VALUE | DATA<br>UNITS | NOTE |
|------------------------|------|--------------------------------------------------------------------------------------------------------------------|--------------|--------------------|------------------|---------------|------|
| OPERATION              | 0x01 | Configures the operational state of the module                                                                     | R/W<br>byte  | Bit field          | 0x80             | /             | 1    |
| ON_OFF_CONFIG          | 0x02 | Configures the combination of CONTROL<br>pin input and serial bus commands<br>needed to turn the module on and off | Read<br>byte | Bit field          | 0x1C             | /             | 1,2  |
| CLEAR_FAULTS           | 0x03 | Clear any fault bits that have been set                                                                            | Send<br>byte | /                  | /                | /             | /    |
| RESTORE_DEFAULT_ALL    | 0x12 | Restore the factory settings to the non-<br>volatile memory                                                        | Write        | /                  | /                | /             | 5    |
| STORE_USER_ALL         | 0x15 | Store the current settings to the non-<br>volatile memory                                                          | Write        | /                  | /                | /             | 5    |
| VOUT_MODE              | 0x20 | Vo data format                                                                                                     | Read<br>byte | mode +<br>exponent | 0x16             | /             | /    |
| VOUT_COMMAND           | 0x21 | Set the output voltage normal value                                                                                | R/W<br>word  | Vout linear        | 12/12.25         | Volts         | 8    |
| VOUT_MAX               | 0x24 | Set an upper limit on the output voltage the module can command                                                    | Read<br>word | Vout linear        | 12.6             | Volts         | /    |
| VOUT_MARGIN_HIGH       | 0x25 | Set the output voltage margin high value                                                                           | Read<br>word | Vout linear        | 12.5             | Volts         | /    |
| VOUT_MARGIN_LOW        | 0x26 | Set the output voltage margin low value                                                                            | Read<br>word | Vout linear        | 10               | Volts         | /    |
| VOUT_MIN               | 0x2B | Set a lower limit on the output voltage the<br>module can command                                                  | Read<br>word | Vout linear        | 8                | Volts         | /    |
| MAX_DUTY               | 0x32 | Set the maximum duty cycle                                                                                         | Read<br>word | Linear             | 50               | %             | /    |
| FREQUNCY_SWITCH        | 0x33 | Set the switching frequency                                                                                        | Read<br>word | Linear             | 130              | kHz           | /    |
| VOUT_OV_FAULT_LIMIT    | 0x40 | Set the output over voltage fault threshold                                                                        | R/W<br>word  | Vout linear        | 13.5             | Volts         | 4    |
| VOUT_OV_FAULT_RESPONSE | 0x41 | Instructs what action to take in response to an output overvoltage fault                                           | R/W<br>byte  | Bit field          | 0x80             | /             | 1    |
| IOUT_OC_FAULT_LIMIT    | 0x46 | Set the output overcurrent fault threshold                                                                         | R/W<br>word  | Linear             | 65               | А             | 3,4  |
| IOUT_OC_FAULT_RESPONSE | 0x47 | Instructs what action to take in response to an output overcurrent fault                                           | R/W<br>byte  | Bit field          | 0xF8             | /             | 1    |
| OT_FAULT_LIMIT         | 0x4F | Set the over temperature fault threshold                                                                           | R/W<br>word  | Linear             | 135              | Deg C         | 3,4  |
| OT_FAULT_RESPONSE      | 0x50 | Instructs what action to take in response to an over temperature fault                                             | R/W<br>byte  | Bit field          | 0xB8             | /             | 1    |
| MFR_C1_C2_CONFIG       | 0x6C | Configure C2 pin function                                                                                          | R/W<br>byte  | Bit field          | 0x00             | /             | 1    |
| MFR_C2_CONFIG          | 0x6D | Configure C2 pin logic                                                                                             | R/W<br>byte  | Bit field          | 0x00             | /             | 1    |
| MFR_PGOOD_POLARITY     | 0x6E | Configure power good logic                                                                                         | R/W<br>byte  | Bit field          | 0x00             | /             | 1    |
| STATUS_WORD            | 0x79 | Returns the information with a summary of the unit's fault condition                                               | Read<br>word | Bit field          | 0                | /             | 1,6  |
| STATUS_VOUT            | 0x7A | Returns the information with a<br>summary of the unit's output voltage<br>condition                                | Read<br>byte | Bit field          | 0                | /             | 1,6  |
| STATUS_IOUT            | 0x7B | Returns the information with a summary of the unit's output current condition                                      | Read<br>byte | Bit field          | 0                | /             | 1,6  |
| STATUS_TEMPERATURE     | 0x7D | Returns the information with a summary of the unit's temperature condition                                         | Read         | Bit field          | 0                | /             | 1,6  |
| STATUS_CML             | 0x7E | Returns the information with a summary of the unit's communication condition                                       | Read<br>byte | Bit field          | 0                | /             | 1,6  |
| READ_VIN               | 0x88 | Returns the input voltage of the module                                                                            | Read<br>word | Linear             | /                | Volts         | /    |
| READ_VOUT              | 0x8B | Returns the output voltage of the module                                                                           | Read         | Vout Linear        | /                | Volts         | /    |
| READ_IOUT              | 0x8C | Returns the output current of the module                                                                           | Read         | Linear             | /                | А             | /    |
|                        |      |                                                                                                                    |              |                    |                  |               |      |



| COMMAND                          | CODE | COMMAND DESCRIPTION                               | TYPE          | DATA<br>FORMAT | DEFAULT<br>VALUE | DATA<br>UNITS | NOTE |
|----------------------------------|------|---------------------------------------------------|---------------|----------------|------------------|---------------|------|
| READ_TEMPERATURE_1               | 0x8D | Returns the temperature of the module             | Read<br>word  | Linear         | /                | Deg C         | /    |
| POWER MANAGEMENT<br>BUS_REVISION | 0x98 | Reads the revision of the Power<br>Management Bus | Read<br>byte  | Bit field      | 0x33             | /             | 1    |
| MFR_ID                           | 0x99 | Reads the ID of the manufacture                   | Read<br>block | ASCII          | BELF             | /             | /    |
| FIRMWARE_REV                     | 0x9B | Reads the revision of the firmware                | Read<br>block | ASCII          | /                | /             | 7    |

#### NOTES:

- 1. Refer to below detailed description
- 2. OPERATION command controls module on/off
- 3. Before write operation, it is necessary to read the register data and parse out the corresponding linear format N value, then convert write value based on N
- 4. In order to ensure that the product works properly, the adjustment range of the protection limit value is limited, when the set value exceeds the upper or lower limits, the lower limit value is automatically set. The following table shows the upper and lower limits

|                     | -,   |               |                 |
|---------------------|------|---------------|-----------------|
| COMMAND             | CODE | THE LOW LIMIT | THE UPPER LIMIT |
| VOUT_OV_FAULT_LIMIT | 0x40 | 13.2          | 14              |
| IOUT_OC_FAULT_LIMIT | 0x46 | 43            | 70              |
| OT_FAULT_LIMIT      | 0x4F | 120           | 140             |

5. Read or write this command, PSU will shut down until next vin power cycle

- 6. ALL the fault bits set in all the status registers remain set, even if the fault condition is removed or corrected, until one of the following occur:
  - 1) A remote off then remote on cycle;
  - 2) The device receives a CLEAR\_FAULTS command;
  - 3) Vin power is removed from the module.
- 7. Two byte count command, value varies according to software version
- 8. No-load condition, default value is 12(without droop),12.25(with droop)



Europe, Middle East +353 61 225 977 North America +1 408 785 5200

| OPERATI       | OPERATION (0x01)                         |           |                  |                     |  |
|---------------|------------------------------------------|-----------|------------------|---------------------|--|
| Bit<br>number | Purpose                                  | Bit value | Meaning          | Default<br>settings |  |
| 7             | 7 Turn the module on/off                 | 1         | On               | 1                   |  |
| I             |                                          | 0         | Off              | I                   |  |
| 6             | Reserved                                 | /         | /                | 0                   |  |
|               |                                          | 00        | VOUT_COMMAND     |                     |  |
| E. 4          | Control the source of the output voltage | 01        | VOUT_MARGIN_LOW  | 00                  |  |
| 5.4           | 5:4 command                              | 10        | VOUT_MARGIN_HIGH | 00                  |  |
|               |                                          | 11        | /                |                     |  |
| 3:0           | Reserved                                 | /         | /                | 0000                |  |

| ON_OFF_       | ON_OFF_CONFIG (0x02)                            |           |                            |                     |  |
|---------------|-------------------------------------------------|-----------|----------------------------|---------------------|--|
| Bit<br>number | Purpose                                         | Bit value | Meaning                    | Default<br>settings |  |
| 7:5           | Reserved                                        | /         | /                          | 000                 |  |
| 4             | Module powers up regardless of the state of     | 0         | /                          | 4                   |  |
| 4             | the CONTROL pin and OPERATION<br>command or not | 1         | Wait CONTROL and OPERATION | I                   |  |
| 3             | Module powers up regardless of the state of     | 0         | /                          | 1                   |  |
| 3             | the OPERATION command or not                    | 1         | Wait OPERATION command     | I                   |  |
| 0             | Module powers up regardless of the state of     | 0         | /                          | 1                   |  |
| 2             | the CONTROL pin or not (Not supported)          | 1         | Wait CONTROL pin           | Į.                  |  |
| 1:0           | Reserved                                        | /         | /                          | 00                  |  |

| VOUT_OV       | VOUT_OV_FAULT_RESPONSE (0x41) |           |                                                                                                              |                     |  |  |
|---------------|-------------------------------|-----------|--------------------------------------------------------------------------------------------------------------|---------------------|--|--|
| Bit<br>number | Purpose                       | Bit value | Meaning                                                                                                      | Default<br>settings |  |  |
|               |                               | 00-01     | /                                                                                                            |                     |  |  |
| 7:6           | Response when fault happens   | 10        | The module shuts down and response according to the retry setting in bits [5:3]                              | 10                  |  |  |
|               |                               | 11        | /                                                                                                            |                     |  |  |
|               |                               | 000       | Module does not attempt to restart until a<br>RESET signal or OPERATION command, or<br>Bias power is removed |                     |  |  |
| 5:3           | Retry setting                 | 001-110   | /                                                                                                            | 000                 |  |  |
|               |                               | 111       | Attempts to restart continuously until it is<br>commanded off                                                |                     |  |  |
| 2:0           | Reserved                      | /         | /                                                                                                            | 000                 |  |  |
|               |                               |           |                                                                                                              |                     |  |  |



|      | 0.0 |       | DEODONOE        |                 |
|------|-----|-------|-----------------|-----------------|
|      |     |       | RESPONSE (      | $(1 \times 17)$ |
| 1001 |     | IAULI | <b>NEOFONOL</b> |                 |

| Bit<br>number | Purpose                        | Bit value | Meaning                                                                                                      | Default<br>settings |  |
|---------------|--------------------------------|-----------|--------------------------------------------------------------------------------------------------------------|---------------------|--|
|               | 00-10                          | /         |                                                                                                              |                     |  |
| 7:6           | :6 Response when fault happens | 11        | The module shuts down and response according to the retry setting in bits [5:3]                              | 11                  |  |
| 5.0           |                                | 000       | Module does not attempt to restart until a<br>RESET signal or OPERATION command, or<br>Bias power is removed |                     |  |
| 5:3           | Retry setting                  | 001-110   | /                                                                                                            | 111                 |  |
|               |                                | 111       | Attempts to restart continuously until it is<br>commanded off                                                |                     |  |
| 2:0           | Reserved                       | /         | /                                                                                                            | 000                 |  |

| OT_FAUL       | OT_FAULT_RESPONSE (0x50)    |           |                                                                                                              |                     |  |
|---------------|-----------------------------|-----------|--------------------------------------------------------------------------------------------------------------|---------------------|--|
| Bit<br>number | Purpose                     | Bit value | Meaning                                                                                                      | Default<br>settings |  |
|               |                             | 00-01     | /                                                                                                            |                     |  |
| 7:6           | Response when fault happens | 10        | The module shuts down and response according to the retry setting in bits [5:3]                              | 10                  |  |
|               |                             | 11        | /                                                                                                            |                     |  |
| 5.0           |                             | 000       | Module does not attempt to restart until a<br>RESET signal or OPERATION command, or<br>Bias power is removed |                     |  |
| 5:3           | Retry setting               | 001-110   | /                                                                                                            | 111                 |  |
|               |                             | 111       | Attempts to restart continuously until it is<br>commanded off                                                |                     |  |
| 2:0           | Reserved                    | /         | /                                                                                                            | 000                 |  |

| MFR_C1_       | C2_CONFIG (0x6C)  |           |                            |                     |
|---------------|-------------------|-----------|----------------------------|---------------------|
| Bit<br>number | Purpose           | Bit value | Meaning                    | Default<br>settings |
| 7:2           | Reserved          | /         | /                          | 000000              |
| 4             | Die configuration | 0         | C2 pin: POWER_GOOD         | 0                   |
| I             | Pin configuration | 1         | C2 pin: ON/OFF (Secondary) | 0                   |
| 0             | Reserved          | /         | /                          | 0                   |

| MFR_C2_       | CONFIG (0x6D)               |           |                                                   |                     |
|---------------|-----------------------------|-----------|---------------------------------------------------|---------------------|
| Bit<br>number | Purpose                     | Bit value | Meaning                                           | Default<br>settings |
| 7:2           | Reserved                    | 1         | /                                                 | 000000              |
| 4             | ON/OFF Configuration        | 1         | And- Primary and secondary side on/off            | 0                   |
| I             | ON/OFF Conliguration        | 0         | C2 pin signal is ignored                          | 0                   |
| 0             |                             | 1         | Positive Logic (High level enable: input > 2.64V) | 0                   |
| 0             | Secondary Side ON/OFF logic | 0         | Negative Logic (Low level enable: input < 0.66V)  | 0                   |



**Asia-Pacific** +86 755 298 85888 Europe, Middle East +353 61 225 977 North America +1 408 785 5200

| MFR_PG        | DOG_POLARITY (0x6E) |           |                                              |                     |
|---------------|---------------------|-----------|----------------------------------------------|---------------------|
| Bit<br>number | Purpose             | Bit value | Meaning                                      | Default<br>settings |
| 7:1           | Reserved            | /         | /                                            | 0000000             |
| 0             | Power Good Logic    | 1<br>0    | Positive PGOOD logic<br>Negative PGOOD logic | 0                   |

| STATUS_       | STATUS_WORD (0x79) |           |                                                                              |                     |  |  |
|---------------|--------------------|-----------|------------------------------------------------------------------------------|---------------------|--|--|
| HIGH BYT      | HIGH BYTE          |           |                                                                              |                     |  |  |
| Bit<br>number | Purpose            | Bit value | Meaning                                                                      | Default<br>settings |  |  |
| 7             | VOUT 1<br>0        | 1         | An output voltage fault has occurred                                         | 0                   |  |  |
| I             |                    | 0         | Not occurred                                                                 | 0                   |  |  |
| 6             | IOUT/POUT          | 1         | An output current or output power fault has<br>occurred                      | 0                   |  |  |
|               | (                  | 0         | Not occurred                                                                 |                     |  |  |
| F             | INPUT              | 1         | An input overvoltage fault has occurred                                      | 0                   |  |  |
| 5             | (Not supported)    | 0         | Not occurred                                                                 | 0                   |  |  |
| 4             | Reserved           | /         | /                                                                            | 0                   |  |  |
| 3             | Dower Cood         | 1         | Power_Good signal is negated                                                 | 0                   |  |  |
| 3             | Power_Good         | 0         | Power_Good signal is ok                                                      | 0                   |  |  |
| 2:1           | Reserved           | /         | /                                                                            | 00                  |  |  |
| 0             | UNKNOWN            | 1         | A fault type not given in bits [15:1] of the<br>SATUS_WORD has been detected | 0                   |  |  |
|               |                    | 0         | Not occurred                                                                 |                     |  |  |

### LOW BYTE

| LOW DTI       | <b>E</b>                                |           |                                                                                                                                           |                  |
|---------------|-----------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Bit<br>number | Purpose                                 | Bit value | Meaning                                                                                                                                   | Default settings |
| 7             | Busy                                    | 1         | A fault was declared because the device was busy and unable to respond                                                                    | 0                |
|               |                                         | 0         | Not occurred                                                                                                                              |                  |
| 6             | Off                                     | 1         | This bit is asserted if the unit is not providing<br>power to the output, regardless of the<br>reason, including simply not being enabled | 0                |
|               |                                         | 0         | Not occurred                                                                                                                              |                  |
| 5             | VOUT_OV_FAULT                           | 1         | An output overvoltage fault has occurred                                                                                                  | 0                |
| 5             | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 0         | Not occurred                                                                                                                              | 0                |
| 4             | IOUT_OC_FAULT                           | 1         | An output overcurrent fault has occurred                                                                                                  | 0                |
| 4             |                                         | 0         | Not occurred                                                                                                                              |                  |
| 3             | VIN_UV_FAULT                            | 1         | An input under voltage fault has occurred                                                                                                 | 0                |
| 0             | (Not supported)                         | 0         | Not occurred                                                                                                                              | 0                |
| 2             | TEMPERATURE                             | 1         | A temperature fault has occurred                                                                                                          | 0                |
| 2             |                                         | 0         | Not occurred                                                                                                                              | 0                |
| 1             | CML                                     | 1         | A communication, memory or logic fault has<br>occurred                                                                                    | 0                |
|               |                                         | 0         | Not occurred                                                                                                                              |                  |
| 0             | NONE_OF_THE_ABOVE                       | 1         | A fault or warning not listed in bits [7:1] of this byte has occurred                                                                     | 0                |
|               |                                         | 0         | Not occurred                                                                                                                              |                  |
|               |                                         |           |                                                                                                                                           |                  |

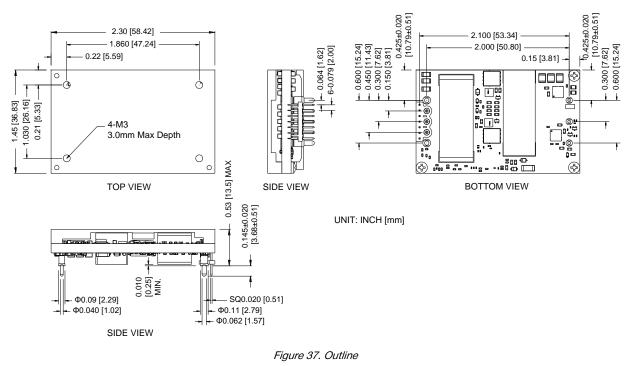


| STATUS_VOUT (0x7A) |               |           |              |                     |
|--------------------|---------------|-----------|--------------|---------------------|
| Bit<br>number      | Purpose       | Bit value | Meaning      | Default<br>settings |
| 7                  | VOUT_OV_FAULT | 1         | Occurred     | 0                   |
| I                  |               | 0         | Not occurred |                     |
| 6:5                | Reserved      | /         | /            | 00                  |
| 4                  | VOUT_UV_FAULT | 1         | Occurred     | 0                   |
| 4                  |               | 0         | Not occurred |                     |
| 3:0                | Reserved      | /         | /            | 0000                |

| STATUS_IOUT (0x7B) |               |           |              |                     |
|--------------------|---------------|-----------|--------------|---------------------|
| Bit<br>number      | Purpose       | Bit value | Meaning      | Default<br>settings |
| 7                  | IOUT_OC_FAULT | 1         | Occurred     | 0                   |
|                    |               | 0         | Not occurred | 0                   |
| 6:0                | Reserved      | /         | /            | 0000000             |

| STATUS_TEMPERATURE (0x7D) |          |           |              |                     |
|---------------------------|----------|-----------|--------------|---------------------|
| Bit<br>number             | Purpose  | Bit value | Meaning      | Default<br>settings |
| 7                         | OT FAULT | 1         | Occurred     | 0                   |
| 1                         | UT_FAULT | 0         | Not occurred | 0                   |
| 6:0                       | Reserved | /         | /            | 0000000             |

| STATUS_CML (0x7E) |                                           |           |              |                     |  |
|-------------------|-------------------------------------------|-----------|--------------|---------------------|--|
| Bit<br>number     | Purpose                                   | Bit value | Meaning      | Default<br>settings |  |
| 7                 | 7 Invalid or unsupported command received | 1         | Occurred     | 0                   |  |
| 1                 |                                           | 0         | Not occurred |                     |  |
| 6                 | Invalid or unsupported data received      | 1         | Occurred     | 0                   |  |
| 0                 |                                           | 0         | Not occurred | 0                   |  |
| 5:0               | Reserved                                  | /         | /            | 000000              |  |
| 5:0               | Keserved                                  | /         | /            | 000000              |  |


| POWER MANAGEMENT BUS_REVISION (0x98) |                                                                                                            |           |         |                     |  |
|--------------------------------------|------------------------------------------------------------------------------------------------------------|-----------|---------|---------------------|--|
| Bit<br>_number _                     | Purpose                                                                                                    | Bit value | Meaning | Default<br>settings |  |
|                                      | Indicate the revision of Power Management<br>Bus Specification Part I to which the device<br>is compliant  | 0000      | 1.0     |                     |  |
| 7:4                                  |                                                                                                            | 0001      | 1.1     | 10                  |  |
| 7.4                                  |                                                                                                            | 0010      | 1.2     | 1.3                 |  |
|                                      |                                                                                                            | 0011      | 1.3     |                     |  |
|                                      | Indicate the revision of Power Management<br>Bus Specification Part II to which the device<br>is compliant | 0000      | 1.0     |                     |  |
|                                      |                                                                                                            | 0001      | 1.1     |                     |  |
| 3:0                                  |                                                                                                            | 0010      | 1.2     | 1.3                 |  |
|                                      |                                                                                                            | 0011      | 1.3     |                     |  |

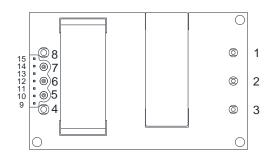


**Asia-Pacific** +86 755 298 85888 Europe, Middle East +353 61 225 977 North America +1 408 785 5200

## **19. MECHANICAL DIMENSIONS**

### OUTLINE



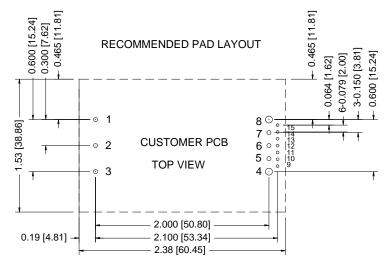

NOTE: This module is recommended and compatible with Pb-Free Wave Soldering and must be soldered using a peak solder temperature of no more than 260 °C for less than 5 seconds.

#### NOTES:

- 1) All Pins: Material Copper Alloy;
  - Finish PIN 1/2/3/4/8 tin plated. Others gold plated.
- 2) Un-dimensioned components are shown for visual reference only.
- 3) All dimensions in inch [mm]; Tolerances: x.xx +/-0.02 inch [0.51 mm]. x.xxx +/-0.010 inch [0.25 mm]. Unless otherwise stated.



### **PIN DEFINITIONS**




## BOTTOM VIEW

#### Figure 38. Pins

| PIN | DESCRIPTION | PIN | DESCRIPTION |
|-----|-------------|-----|-------------|
| 1   | Vin (+)     | 9   | C2          |
| 2   | ON/OFF      | 10  | DGND        |
| 3   | Vin (-)     | 11  | PMBDATA     |
| 4   | Vout (-)    | 12  | SMBALERT    |
| 5   | Sense (-)   | 13  | PMBCLK      |
| 6   | Trim        | 14  | Addr1       |
| 7   | Sense (+)   | 15  | Addr0       |
| 8   | Vout (+)    |     |             |

#### **RECOMMENDED PAD LAYOUT**



1,2,3,5,6,7 Φ0.065 HOLE SIZE, Φ0.110 min PAD SIZE 4,8 Φ0.085 HOLE SIZE, Φ0.130 min PAD SIZE 9,10,11,12,13,14,15 Φ0.035 HOLE SIZE, Φ0.065 min PAD SIZE

Figure 39. Recommended pad layout



**Asia-Pacific** +86 755 298 85888 Europe, Middle East +353 61 225 977 North America +1 408 785 5200

BCD.20092\_AL

## **20. REVISION HISTORY**

| DATE       | REVISION | CHANGES DETAIL                                                                                                      | APPROVAL |
|------------|----------|---------------------------------------------------------------------------------------------------------------------|----------|
| 2017-06-05 | AA       | First release                                                                                                       | S. Wang  |
| 2017-08-31 | AB       | Add droop                                                                                                           | S. Wang  |
| 2017-09-07 | AC       | Update THERMAL DERATING CURVE and EFFICIENCY DATA                                                                   | S.Wang   |
| 2017-10-25 | AD       | Update THERMAL DERATING CURVE and Input reflected ripple current                                                    | S.Wang   |
| 2018-06-20 | AE       | Update Output Trim Equations                                                                                        | S.Wang   |
| 2018-07-09 | AF       | Update Non-Isolated to Isolated in the Key Features & Benefits                                                      | S. Wang  |
| 2019-09-05 | AG       | Update power management bus information                                                                             | S. Wang  |
| 2020-06-15 | AH       | Update mechanical pins, efficiency, weight, altitude and thermal derating curves.<br>Add safety&EMC.                | H.Yu     |
| 2020-08-11 | AI       | Add module photo and safety certification. Update power management bus<br>information, efficiency and waveforms.    | H.Yu     |
| 2020-09-09 | AJ       | Add output current share.                                                                                           | H.Yu     |
| 2020-10-10 | AK       | Update module photo.                                                                                                | H.Yu     |
| 2021-05-24 | AL       | Add object ID. Update power management bus information. Update thermal test setup drawing by correcting the height. | XF.Jiang |

## For more information on these products consult: tech.support@psbel.com

NUCLEAR AND MEDICAL APPLICATIONS - Products are not designed or intended for use as critical components in life support systems, equipment used in hazardous environments, or nuclear control systems.

TECHNICAL REVISIONS - The appearance of products, including safety agency certifications pictured on labels, may change depending on the date manufactured. Specifications are subject to change without notice.

