PES2200-12-080xD # **DC-DC Front-End Power Supply** The PES2200-12-080xD is a 2200 Watt DC to DC power supply that converts -40 to -75 VDC voltage into an insulated main output of +12 VDC for powering intermediate bus architectures (IBA) in high performance and reliability servers, routers, and network switches. The PES2200-12-080xD utilizes full digital control architecture for greater efficiency, control, and functionality. This power supply meets international safety standards and displays the CE-Mark for the European Low Voltage Directive (LVD). # **Key Features & Benefits** - Wide input voltage range: -40 to -75 VDC - 2200 W continuous output power capability - Always-on 12 VSB / 3.5 A standby output - Hot-plug capable - Parallel operation with active current sharing - Full digital controls for improved performance - High power density design: 59 W/in³ - Small form factor: 80 x 40 x 195 mm (3.15 x 1.57 x 7.68 in) - Power Management Bus communication interface for control, programming and monitoring - Status LED with fault signaling - Black Box recorder available # **Applications** - Networking Switches - Servers & Routers - Telecommunications ## 1. ORDERING INFORMATION | PES | 2200 | | 12 | | 080 | х | D | х | |--------------------|-------------|------|-----------|------|-------|---|-------|-----------------------------| | Product
Family | Power Level | Dash | V1 Output | Dash | Width | Airflow | Input | Specific code ³ | | PES Front-
Ends | 2200 W | | 12 V | | 80 mm | N: Normal ¹
R: Reverse ² | D: DC | x = Blank
x = S+3 digits | - "N" Normal Airflow (NAF) from Output connector to Input DC socket - ² "R" Reverse Airflow (RAF) from Input DC socket to Output connector - Contact factory for availability of Specific code, e.g. Ordering PN as PES2200-12-080NDS475 # 2. OVERVIEW The PES2200-12-080xD DC/DC power supply is a DSP controlled, highly efficient front-end power supply. It incorporates state of the art technology and uses an interleaved forward converter topology with active clamp and synchronous rectification to reduce component stresses, thus providing increased system reliability and very high efficiency. With a wide input DC voltage range the PES2200-12-080xD maximizes power availability in demanding server, network, and other high availability applications. The supply is fan cooled and ideally suited for integration with a matching airflow path. An active OR-ing device on the output ensures no reverse load current and renders the supply ideally suited for operation in redundant power systems. The always-on standby output provides power to external power distribution and management controllers. It is protected with an active OR-ing device for maximum reliability. Status information is provided with a front-panel LED. In addition, the power supply can be controlled and the fan speed set via the I2C bus. The I2C bus allows full monitoring of the supply, including input and output voltage, current, power, and inside temperatures. Cooling is managed by a fan controlled by the DSP controller. The fan speed is adjusted automatically depending on the actual power demand and supply temperature and can be overridden through the I2C bus. Figure 1. PES2200-12-080xD Block Diagram ## 3. ABSOLUTE MAXIMUM RATINGS Stresses in excess of the absolute maximum ratings may cause performance degradation, adversely affect long-term reliability, and cause permanent damage to the supply. | PARAMETER | | CONDITIONS / DESCRIPTION | MIN | MAX | UNITS | |-----------|---------------|--------------------------|-----|-----|-------| | Vi maxc | Maximum Input | Continuous | | -78 | VDC | ## 4. INPUT General Condition: $T_A = 0...55$ °C, unless otherwise noted. | PARAMET | ER | DESCRIPTION / CONDITION | MIN | NOM | MAX | UNIT | |-----------------------|---------------------------------|--|-----|-----|------|------| | Vi start | Minimum operating input voltage | Stand-by output available, DSP running | -30 | | | VDC | | Vi nom | Nominal input voltage | | -48 | | -60 | VDC | | Vi | Input voltage | Normal operation (from Vi min to Vi max) | -40 | | -75 | VDC | | li | Input current | Vi > Vi min | | | 62.5 | Α | | li pk | Inrush current limitation | From Vi min to Vi max, T _A = 25°C, cold start | | | 50 | Α | | Vi _{VSB_on} | Turn-on standby input voltage | Ramping up | -28 | | -30 | VDC | | Vi _{VSB_off} | Turn-off standby input voltage | Ramping down | -19 | | -21 | VDC | | Vi _{V1_on} | Turn-on V1 input voltage | Ramping up | -38 | | -40 | VDC | | Vi _{V1_off} | Turn-off V1 input voltage | Ramping down | -37 | | -39 | VDC | | | | Vi = -48 VDC; -60 VDC; 10% load | | 82 | | % | | , | Efficiency 1 | Vi = -48 VDC; -60 VDC; 20% load | | 90 | | % | | η | Efficiency ¹ | Vi = -48 VDC; -60 VDC; 50% load | | 94 | | % | | | | Vi = -48 VDC; -60 VDC; 100% load | | 91 | | % | #### **4.1 INPUT FUSE** A fast-acting 80 A (or equivalent) input fuse in the negative voltage path inside the power supply protect against severe defects. The fuses are not accessible from the outside and are therefore not serviceable parts. # **4.2 INRUSH CURRENT** Internal bulk capacitors will be charged through resistors connected from bulk cap minus pin to the DC rail minus, thus limiting the inrush current. After the inrush phase, NTC resistors are then shorted with MOSFETs connected in parallel. The Inrush control is managed by the digital controller (DSP). ## **4.3 INPUT UNDER-VOLTAGE** If the input voltage stays below the input under voltage lockout threshold Vi on, the supply will be inhibited. Once the input voltage returns within the normal operating range, the supply will return to normal operation again. ## **4.4 EFFICIENCY** High efficiency (see *Figure 2*) is achieved by using state-of-the-art silicon power devices in conjunction with soft-transition topologies minimizing switching losses and a full digital control scheme. Synchronous rectifiers on the output reduce the losses in the high current output path. The speed of the fan is digitally controlled to keep all components at an optimal operating temperature regardless of the ambient temperature and load conditions. ¹ Efficiency measured without fan power per EPA server guidelines. Asia-Pacific Europe, Middle East North America +86 755 298 85888 +353 61 49 8941 Figure 2. Efficiency vs. Load current (ratio metric loading) # **4.5 DC LINE TRANSIENT TEST** ## **MINUS 75 VDC LINE TRANSIENT TEST** A standard line voltage momentary transient test is shown below. This test simulates a momentary voltage overshoot. This should not affect the operation of the PSU; the output voltage should remain in regulation. This test shall be conducted every 10 sec for 30 min (180 times total). Figure 3. Minus 75 VDC Line Transient Test # **0 V LINE TRANSIENT TEST** A standard line voltage momentary blackout test is shown below. This test simulates a momentary switch throw off-on, see graph below. The power supply should restart, not latch. This test shall be conducted 3 times in 10 min intervals. Practically a blackout of any duration should not damage the power supply in any way and not cause a latch off condition. Figure 4. 0 V Line Transient Test #### 5. **OUTPUT** General condition: $T_A = 0...55$ °C, $V_i = -48$ VDC unless otherwise noted. | PARAMETE | R | DESCRIPTION / CONDITION | MIN | NOM | MAX | UNIT | |------------------------------|---------------------------------|--|-------|------|-------|---------------------| | Main Output | · V ₁ | | | | | | | V _{1 nom} | Nominal Output Voltage | 0.5 · /t nom. T _A = 25°C | | 12.0 | | VDC | | V _{1 set} | Output Set Point Accuracy | 0.5 · 11 nom, 1A = 25 °C | -1 | | +1 | %V _{1 nom} | | dV1 load | Load Regulation | 0 to 100% I _{1 nom} | | | 240 | mV | | dV1 line | Line Regulation | V _{i min} to V _{i max} | | | 120 | mV | | dV _{1 tot} | Total Regulation | $V_{i min}$ to $V_{i max}$, 0 to 100% $I_{1 nom}$ | -5 | | +5 | %V _{1 nom} | | P _{1 nom} | Nominal Output Power | V _{i min} to V _{i max} | | 2200 | | W | | I _{1 peak} | Peak Output Loading | V _{i min} to V _{i max} (max 20 s) | | | 205 | ADC | | I _{1 nom} | Output Current | V _{i min} to V _{i max} | 0 | | 183 | ADC | | V_{1pp} | Output Ripple Voltage 1 | $V_{i min}$ to $V_{i max}$, 0 to 100% $I_{f nom}$, 20MHz Bandwidth | | | 150 | mVpp | | dI _{1 share} | Current Sharing | Difference between individual h , 04 power supplies in parallel, h total / N > 10% h nom | -5 | | +5 | Α | | VISHARE | Current Share Bus Voltage | I _{1 nom} | | 8 | | VDC | | dV₁ dyn | Dynamic Load Regulation | Test frequency between 50Hz and 5KHz at duty cycles from 10% to 90%, $\Delta I1 = 60\%$ $I_{1 nom}$, $I1 = 6A 100\%$ | 11.28 | | 12.72 | VDC | | t_{rec} | Recovery Time | $I_{1 \text{ nom}}$, 2000 μ F capacitive loading dl1/dt = 0.25A/ μ s, recovery within 1% of $V_{1 \text{ nom}}$ | | 2 | | ms | | t _{V1 rise} | Output Voltage Rise Time | $V_1 = 1090\% \ V_{1 \text{ nom}}, \ C_{ext} < 10 \text{ mF}$ | 1 | | 70 | ms | | t _{V1 ovrsh} | Output Turn-on Overshoot | V _{1 nom} , 0 to 100% I _{1 nom} | | | 0.6 | V | | dV₁ sense | Remote Sense | Compensation for cable drop, 0 to 100% I _{1 nom} | | | 0.25 | V | | Cv1 load | Capacitive Loading ² | | | | 22 | mF | | Standby Out | put V _{SB} | | | | | | | V _{SB nom} | Nominal Output Voltage | 0.5 · <i>IsB nom</i> , <i>TA</i> = 25°C | | 12.0 | | VDC | | V _{SB set} | Output Set point Accuracy | 0.3 15B NOTI, 1A – 23 0 | -1 | | +1 | %V _{SBnom} | | <i>dVs</i> _B load | Load Regulation | 0 to 100% ISB nom | | | 480 | mV | | dV_{SB} line | Line Regulation | V _{i min} to V _{i max} | | | 120 | mV | | dV _{SB tot} | Total Regulation | V _{i min} to V _{i max} , 0 to 100% I _{SB nom} | -5 | | +5 | %V _{SBnom} | | P _{SB nom} | Nominal Output
Power | V _{i min} to V _{i max} | | 42 | | W | | ISB peak | Peak Output Loading | V _{i min} to V _{i max} | | | 4 | ADC | | ISB nom | Output Current | V _{i min} to V _{i max} | 0 | | 3.5 | ADC | | V _{SB pp} | Output Ripple Voltage 1 | $V_{i min}$ to $V_{i max}$, 0 to 100% $I_{SB nom}$, 20 MHz bandwidth | | | 120 | mVpp | | $dV_{SB\ dyn}$ | Dynamic Load Regulation | $\Delta k_{B} = 50\% \ k_{B \text{ nom}}, \ k_{B} = 0 \dots 100\% \ k_{B \text{ nom}},$ | 11.40 | | 12.60 | VDC | | t _{rec} | Recovery Time | $dk_{B}/dt = 0.25 \text{ A/}\mu\text{s}$, recovery within 1% of $V_{SB \text{ nom}}$ | | 2 | | ms | | t _{VSB rise} | Output Voltage Rise Time | $V_{SB} = 1090\% \ V_{SB \text{ nom}},$ | 5 | | 10 | ms | | t _{VSB ovr sh} | Output Turn-on Overshoot | Vinom, 0 to 100% ISB nom | | | 0.6 | V | | | | | | | | μF | ¹ Ripple noise and dynamic load measured with a 10 μF low ESR capacitor in parallel with a 0.1 μF ceramic capacitor at the point of measurement. 2 Hot swap tested with a minimal 6000 μ F capacitive loading for V_7 and 150 μ F capacitive loading for V_{SB} . Asia-Pacific Europe, Middle East **North America** +86 755 298 85888 +353 61 49 8941 #### 5.1 OUTPUT GROUND / CHASSIS CONNECTION The output return path serves as power and signal ground. All output voltages and signals are referenced to these pins. To prevent a shift in signal and voltage levels due to ground wiring voltage drop a low impedance ground plane should be used as shown in *Figure 5*. Alternatively, separated ground signals can be used as shown in *Figure 6*. In this case the two ground planes should be connected together at the power supplies ground pins. **NOTE:** Within the power supply the output GND pins are connected to the Chassis, which in turn is connected to the Protective Earth terminal. Therefore, it is not possible to set the potential of the output return (GND) to any other than Protective Earth potential. Figure 5. Common Low Impedance Ground Plane Figure 6. Separated Power and Signal Ground ## **5.2 CLOSED LOOP STABILITY** The power supply shall be unconditionally stable under all line/load/transient load conditions including capacitive load ranges. A minimum of: 45 degrees phase margin and -6dB gain margin is required. The power supply manufacturer shall provide proof of the unit's closed-loop stability with local sensing through the submission of Bode plots. Closed-loop stability must be ensured at 10%, 20%, 50% and 100% loads as applicable, 0% is just for reference. #### 5.3 RESIDUAL VOLTAGE IMMUNITY IN STANDBY MODE The power supply should be immune to any residual voltage placed on its outputs (Typically a leakage voltage through the system from standby output) up to 500 mV. There shall be no additional heat generated, nor stressing of any internal components with this voltage applied to any individual or all outputs simultaneously. It also should not trip the protection circuits during turn on. The residual voltage at the power supply outputs for no load condition shall not exceed 100 mV when DC voltage is applied and the PSON_L signal is de-asserted. ### 5.4 COMMON MODE NOISE The common mode noise on any output shall not exceed 350mV pk-pk over the frequency band of 10 Hz to 20 MHz. The measurement shall be made across a 100 Ω resistor between each of DC outputs, including ground at the DC power connector and chassis ground (power subsystem enclosure), the test set-up shall use a FET probe such as Tektronix model P6046 or equivalent. #### 5.5 SOFT STARTING The Power Supply shall contain control circuit which provides monotonic soft start for its outputs without overstress of the DC line or any power supply components at any specified DC line or load conditions. ## 5.6 ZERO LOAD STABILITY REQUIREMENTS When the power subsystem operates in a no load condition, it does not need to meet the output regulation specification, but it must operate without any tripping of over-voltage or other fault circuitry. When the power subsystem is subsequently loaded, it must begin to regulate and source current without fault. #### **5.7 HOT SWAP REQUIREMENTS** Hot swapping a power supply is the process of inserting and extracting a power supply from an operating power system. During this process the output voltages shall remain within the limits with the capacitive load specified. The hot swap test must be conducted when the system is operating under static, dynamic, and zero loading conditions. ## 5.8 FORCED LOAD SHARING The PES front-ends have an active current share scheme implemented for V1. All the ISHARE current share pins need to be interconnected in order to activate the sharing function. If a supply has an internal fault or is not turned on, it will disconnect its ISHARE pin from the share bus. This will prevent dragging the output down (or up) in such cases. The current share function uses an analog bus to transmit and receive current share information. The controller implements a Master/Slave current share function. The power supply providing the largest current among the group is automatically the Master. The other supplies will operate as Slaves and increase their output current to a value close to the Master by slightly increasing their output voltage. The voltage increase is limited to +250 mV. The output will share within 10% at full load. The 12 V_{SB} output is not required to actively share current between power supplies (passive sharing). #### 5.9 RIPPLE / NOISE The test set-up shall be following Figure 7. Figure 7. Differential Noise Test Setup **NOTES:** Load must be isolated from the safety ground to *Figure 7*. When performing this test, the probe clips and capacitors should be located close to the load. #### 6. PROTECTION General Condition: T_A = 0... 55 °C, unless otherwise noted. | PARAME | TER | DESCRIPTION / CONDITION | MIN | NOM | MAX | UNIT | |---------------------|-------------------------------------|--|------|--------------------|-------|------| | F | Input fuse (L) | Not use accessible, fast acting | | 80 | | Α | | V _{1 OV} | OV Threshold V ₁ | Over Voltage V1 Protection, Latch-off Type | 13.0 | 13.9 | 14.5 | VDC | | V _{VSB} OV | OV Threshold VSB | Over Voltage V_{SD} Protection, Automatic recovery Type | 13.0 | 13.9 | 14.5 | VDC | | V1 UV | UV Threshold V ₁ | Under Voltage V_1 Protection, Latch-off Type | | 11.2 | | VDC | | V _{VSB UV} | UV Threshold V _{SB} | Under Voltage V_{sb} Protection, Automatic recovery Type | | 11.2 | | VDC | | lv1 oc | OC Limit V ₁ | Over Current Limitation, Latch-off, V_{imin} to V_{imax} | Refe | r to sectio | n 6.5 | ADC | | I _{VSB OC} | OC Limit V _{SB} | Over Current Limitation, Automatic recovery Type | 4.5 | | 5.5 | Α | | \mathcal{T}_{SD} | Over Temperature on Critical Points | Automatic shut-down | R | efer to <i>Tal</i> | ble 9 | °C | ## **6.1 PROTECTION CIRCUITS** Protection circuits inside the power supply shall cause only the power supply's main output to shut down. If the power supply latches off due to a protection circuit tripping, a DC OFF for 15sec and a PSON_L cycle HIGH for 1sec shall be able to reset the power supply. ### **6.2 OVER TEMPERATURE PROTECTION (OTP)** The power supply will be protected against over temperature conditions caused by loss of fan cooling or excessive ambient temperature. In an OTP condition the PSU will shut down, when the power supply temperature drops to within specified limits, the power supply shall restore power automatically, while the 12VSB remains always on, the OTP circuit must have built in margin such that the power supply will not oscillate on and off due to temperature recovering condition, the OTP trip temperature level shall be 5°C typically higher than over temperature warning threshold level. #### **6.3 OVER VOLTAGE PROTECTION** The PES2200-12-080xD front-end provides a fixed threshold overvoltage (OV) protection implemented with a HW comparator for both the main and the standby output. Once an OV condition has been triggered on the main output, the supply will shut down and latch the fault condition. The latch can be unlocked by disconnecting the supply from the DC mains or by toggling the PSON_L input. 12VSB will be auto-recovered after removing OVP limit. # 6.4 UNDER VOLTAGE DETECTION Both main and standby outputs are monitored. PWOK_H pin signal if the output voltage exceeds ±5% of its nominal voltage. The main output will latch off if the main output voltage when V1 falls below 11.2 V (typically in an overload condition), the latch can be unlocked by disconnecting the supply from the DC mains or by toggling the PSON_L input. If the standby output leaves its regulation bandwidth for more than 10ms then the main output is disabled to protect the system. # 6.5 OVER CURRENT LIMIT & OVER POWER PROTECTION (OCP & OPP) The power supply shall have current limit to prevent the outputs from exceeding the values shown in *Table 1*. If the current limits are exceeded the power supply shall shutdown and latch off. The latch will be cleared only by a DC power interruption. The power supply shall not be damaged from repeated power cycling in this condition. 12VSB will be auto-recovered after removing OCP limit. | NORM | DESCRIPTIOIN | CURRENT
THRESHOLD (A) | | TESTING | COMMENTS | | | |---------|---|--------------------------|-----|---------|----------|---------------------------|---------------------| | | | MIN | MAX | MIN | MAX | RANGE | 33 <u>2</u> 3 | | OPP | Over power protection (voltage foldback) | 238 | 252 | 100 μs | NA | OPP to V fold back to 8 V | | | OCP | Slow over current protection (shutdown, latch) | 207 | 219 | 50 ms | 100 ms | | | | OCW | Slow over current warning (SMB_ALERT_L) | 207 | 219 | 15 ms | 50 ms | | | | OCPstby | Standby over current protection (shutdown, hiccup mode) | 4.5 | 5.5 | | | | 10 ms minimum delay | Table 1. OCP & OPP The power
supply shall have a circuit to quickly assert the SMB_ALERT_L signal when the output current exceeds the over power protection threshold in the PSU, The SMB_ALERT_L signal must always assert before the over power protection threshold is exceeded. SMB_ALERT_L must always latch for about 100msec before being released. #### 6.6 PEAK LOAD WITH ADDED SYSTEM BUFFER CAPACITANCE The power supply shall be able to support higher peak power levels with added system buffer capacitance for up to 100 µsec. *Table 2* are PMAX testing conditions. | PEAK POWER | PEAK CURRENT | SYSTEM CAPACITANCE | PEAK LOAD DURATION | VOLTAGE UNDERSHOOT | |------------|--------------|--------------------|--------------------|--------------------| | 2856 W | 238 A | 6,150 μF | 100 μs | 5% | Table 2. PMAX Testing Conditions # 7. MONITORING The power supply operating parameters can be accessed through I²C interface. For more details refer to chapter I2C / POWER MANAGEMENT BUS COMMUNICATION and document PES2200-12-080xD Power Management Bus Communication Manual. | PARAMETER | | DESCRIPTION / CONDITION | MIN NO | M MAX | UNIT | |---------------------|-----------------------------|---|--------|-------|------| | V _{i mon} | Input Voltage | $V_{i min LL} \leq V_i \leq V_{i max}$ | -1 | +1 | VDC | | I _{i mon} | Input Current | | -0.7 | +0.7 | ADC | | | | $I_1 \le 10\% \ I_{1 \ nom}$ | -22 | +22 | W | | Pi mon | True Input Power | 10% I _{1 nom} < I ₁ ≤ 20% I _{1 nom} | -8 | +8 | % | | | | I ₁ > 20% I _{1 nom} | -4 | +4 | % | | | | I ₁ ≤ 10% I _{1 nom} | -22 | +22 | W | | Ei mon | Total Input Energy | 10% I _{1 nom} < I ₁ ≤ 20% I _{1 nom} | -8 | +8 | % | | | | I ₁ > 20% I _{1 nom} | -4 | +4 | % | | V _{1 mon} | V₁ Voltage | | -1 | +1 | % | | | V₁ Current | $I_1 \le 10\% \ I_{1 \ nom}$ | -1 | +1 | ADC | | I _{1 mon} | | 10% I _{1 nom} < I ₁ ≤ 20% I _{1 nom} | -5 | +5 | % | | | | I ₁ > 20% I _{1 nom} | -2 | +2 | % | | | | $I_1 \le 10\% \ I_{1 \ nom}$ | -15 | +15 | W | | P_{nom} | V ₁ Output Power | 10% I _{1 nom} < I ₁ ≤ 20% I _{1 nom} | -6 | +6 | % | | | | I ₁ > 20% I _{1 nom} | -3 | +3 | % | | | | I ₁ ≤ 10% I _{1 nom} | -15 | +15 | W | | E_{nom} | V₁ Output Energy | 10% <i>I</i> _{1 nom} < <i>I</i> ₁ ≤ 20% <i>I</i> _{1 nom} | -6 | +6 | % | | | | I ₁ > 20% I _{1 nom} | -3 | +3 | % | | T _{ambmon} | Ambient Temperature | $0^{\circ}C \le T_{amb} \le 55^{\circ}C$ | -5 | +5 | °C | | F_S | Fan speed | | -500 | +500 | RPM | Asia-Pacific Europe, Middle East **North America** +86 755 298 85888 +353 61 49 8941 # 8. SIGNALING AND CONTROL # **8.1 ELECTRICAL CHARACTERISTICS** | PARAME | rer | DESCRIPTION / CONDITION | MIN | NOM | MAX | UNIT | |----------------------|---|--|-----|------|----------|----------| | PSON_L | | | | | | | | VIL | Input Low Level Voltage | PSON_L: Main output enabled | 0 | | 0.8 | V | | VIH | Input High Level Voltage | PSON_L: Main output disabled | 2 | | 5.25 | V | | $I_{IL,H}$ | Maximum Source Current | $V_{\rm f}$ = - 0.2 V to + 3.5 V | | | 4 | mA | | Rpull up | Pull-up to 3V3 Located in Power Supply | | | 10 | | kΩ | | PWOK_H | | | | | | | | Vol | Output Low Level Voltage | $Vi < V_{i min LL}, I_{sink} = 400 \mu A$ | 0 | | 0.4 | V | | Vон | Output High Level Voltage | $Vi > V_{i min LL}$, $I_{source} = 200 \mu A$ | 2.4 | | 3.46 | V | | Is | Maximum Sink Current Maximum Source Current | PWOK_H = low
PWOK_H = high | | | 400
2 | μA
mA | | SMB_ALE | RT_L | | | | | | | V _{ext} | Maximum External Pull up Voltage | | | | 3.46 | V | | Vol | Output Low Level Voltage | Failure or Warning condition, Isink < 4 mA | 0 | | 0.4 | V | | R _{pull up} | Pull-up to 3V3 Located in Power Supply | | | None | | | | Is | Sink Current | SMB_ALERT_L = low
SMB_ALERT_L= high | | | 4
50 | mA
μA | | VIN_OK_H | | | | | | | | V_{ext} | Maximum External Pull up Voltage | | | | 3.46 | V | | VOL | Output Low Level Voltage | Failure or Warning condition, Isink < 4 mA | 0 | | 0.4 | V | | Rpull up | Pull-up to 3V3 Located in Power Supply | | | 1 | | kΩ | | Is | Sink Current | VIN_OK_H = low | | | 4 | mA | | | | | | | | | ## **8.2 SENSE INPUTS** The main output has sense lines implemented to compensate for voltage drop on load wires in both positive and negative path. The maximum allowed voltage drop is 200 mV on the positive rail and 50 mV on the GND rail. With open sense inputs the main output voltage will rise by 250 mV. Therefore, if not used, these inputs should be connected to the power output and GND at the power supply connector. The sense inputs are protected against short circuit. In this case the power supply will shut down. # 8.3 PRESENT_L OUTPUT The PRESENT_L pin is wired to internal GND within the power supply. This pin does indicate that there is a power supply present in this system slot. An external pull-up resistor has to be added within the application. Current into PRESENT_L should not exceed 5mA to guarantee a low level voltage if power supply is seated. Figure 8. PRESENT_L Connection #### **8.4 PSON L INPUT** The PSON_L is an internally pulled-up (3.3 V) input signal to enable/disable the main output V1 of the front-end. With low level input the main output is enabled. This active-low pin is also used to clear latched fault condition (except for SCP, OCP latched fault). The PSON_L can be either controlled by an open collector device or by a voltage source. Figure 9. PSON_L connection ## **8.5 PWOK HOUTPUT** PWOK_H is a power OK signal and will be pulled HIGH by the power supply to indicate that all the outputs are within the regulation limits of the power supply. When any output voltage falls below regulation limits or when DC power has been removed for a time sufficiently long so that power supply operation is no longer guaranteed, PWOK_H will be de-asserted to a LOW state. The start of the PWOK_H delay time shall be inhibited as long as any power supply output is in current limit. The PWOK_H and I2C bus of PSU are connected together on the redundant system. The below block diagram was shown the wiring on the system. The internal PWOK_H circuit of power supply is designed so that the PWOK_H bus is the wire-ORed function of the individual PWOK_H signals of all the power supply in parallel. Suggest system Pull-up to 3V3 and pull-up resistance is 10K. The PWOK_H signal also can be separated for each PSU design in system side to indicate each PSU output state. Figure 10. PWOK_H connection # 8.6 SMB_ALERT_L OUTPUT The SMB_ALERT_L signal indicates that the power supply is experiencing a problem that the system agent should investigate. This is a logical OR of the Shutdown and Warning events. It is asserted (pulled Low) at Shutdown or Warning events such as reaching temperature warning/shutdown threshold of critical component, general failure, over-current, over-voltage, under voltage or low-speed of failed fan. This signal may also indicate the power supply is operating in an environment exceeding the specified limits. This signal is to be asserted in parallel with LED turning solid Yellow. The inlet temperature warning threshold must be set at 61°C, preventing exhaust air and cord temperatures temperature exceeding safety ratings. The warning gets de-asserted once inlet air temperature returns into specified operating temperature range. Fan speed control algorithm shall ramp up the fan speed to the maximum prior to the OT_WARNING bit set in STATUS_TEMPERATURE (7Dh) register. In case exhaust air temperature exceeds 70°C higher temp rating cord must be used. Asia-Pacific Europe, Middle East **North America** +86 755 298 85888 +353 61 49 8941 Figure 11. SMB_ALERT_L Connection #### 8.7 VIN OK HOUTPUT This signal will be asserted, driven high, by the power supply to indicate that the input voltage meets the minimum requirements of the parametric PSU specification. The PSU shall de-assert (drive low) under input over-voltage condition. #### DC LINE AND DC LOSS DETECTION ALGORITHM DC line voltage detection for power on: The power supply will use Vrms to determine if the input voltage is within the specified requirements for turning on the power supply unit as called out by the individual power supply specification for DC input voltage range. The Vrms of the input must be determined within 100 ms after the application of DC & Standby has reached regulation. Assertion requirements for VIN_OK_H remain the same. DC line voltage detection for a DC brownout and dropout: PSU shall detect both DC brown out and dropout conditions and issue a power down warning to the end system. The PSU shall de-assert (drive low) VIN_OK_H upon input conditions that fall below the Vin (turn-off) specification of the PSU parametric specification. Under such conditions. After VIN_OK_H de-assertion, the PSU shall derive an average RMS input voltage, measured over a moving average window equal to T1, to establish if conditions meet the requirements for assertion of VIN_OK_H. Refer to *Figure 12*. Figure 12. VIN_OK_H Timing | PARAMETER | DESCRIPTION / CONDITION | MIN | NOM | MAX | UNIT | |-----------|-------------------------|-----|-----|------|------| | T1 | VIN_OK_H Dwell Time | 75 | | 120 | ms | | T2 | VIN_OK_H delay to DC | | | 1700 | ms | | T3 | VIN_OK_H to 12VSB | | | 20 | ms | NOTE: T1 is the minimum VIN_OK_H de-assertion dwell time that is initiated when the PSU has declared a loss of input voltage. Table 3. VIN_OK_H Timing Requirements #### **8.8 TIMING REQUIREMENTS** These are the timing requirements for the power supply operation. The output voltages must rise from 10% to within regulation limits (T_{V1_rise}) within 1.0 ms to 70 ms. For 12 VSB, it is allowed to rise from 5 ms between 10 ms. All outputs must rise monotonically. *Table* shows the timing requirements for the power supply being turned on and off two ways; 1) via the DC input with PSON_L held low; 2) via the PSON_L
signal with the DC input applied. The PSU needs to remain off for 1 second minimum after PWOK_H is de-asserted. Figure 13. Turn On/Off Timing | PARAMETER | DESCRIPTION / CONDITION | MIN | NOM | MAX | UNIT | |---------------------------------|---|-------|-----|------|------| | T _{V1_rise} | Output voltage rise time | 1.0 * | | 70 * | ms | | T _{VSB_on_delay} | Delay from DC being applied to 12 VSB being within regulation. | | | 1500 | ms | | T _{DC_on_delay} | Delay from DC being applied to all output voltages being within regulation. | | | 3000 | ms | | T _{V1_holdup} | Time 12 V output voltage stay within regulation after loss of DC (48VDC input). | 0.3 | | | ms | | $T_{PWOK_H_holdup}$ | Delay from loss of DC to de-assertion of PWOK_H (48VDC input). | 0.3 | | | ms | | T _{PSON_L_on_delay} | Delay from PSON_L active to output voltages within regulation limits. | 5 | | 400 | ms | | $T_{PSON_L_PWOK_H}$ | Delay from PSON_L deactivate to PWOK_H being de-asserted. | | | 5 | ms | | T _{PWOK_H_on} | Delay from output voltages within regulation limits to PWOK_H asserted at turn on. | 100 | | 500 | ms | | $T_{PWOK_H_low}$ | Duration of PWOK_H being in the de-asserted state during an off/on cycle using DC or the PSON_L signal. | 100 | | | ms | | T _{VSB} | Delay from 12 VSB being in regulation to O/Ps being in regulation at DC turn on. | 50 | | 1000 | ms | | T_{VSB_holdup} | Time the 12VSB output voltage stays within regulation after loss of DC (48VDC input). | 3 | | | ms | | T _{DC_off_SMB_ALERT_L} | The power supply shall assert the SMB_ALERT_L signal quickly after a loss of DC input voltage. | | | 2 | ms | $^{^{\}star}$ The 12VSB output voltage rise time shall be from 5.0 ms between 10 ms. Table 4. Timing Requirements Asia-Pacific Europe, Middle East **North America** +86 755 298 85888 +353 61 49 8941 #### 8.9 HOT STANDBY The hot-standby operation is an operating mode allowing to further increase efficiency at light load conditions in a redundant power supply system. Under specific conditions one of the power supplies is allowed to disable Oring gate, to make sure into hot standby mode. This will save the power losses associated with this power supply and at the same time the other power supply will operate in a load range having a better efficiency. ## 8.10 LED INDICATOR The front-end has one front LED showing the status of the supply. The LED is bi-colored: green and amber and indicates DC and DC power presence and warning or fault conditions. *Table 6* lists the different LED status. | | MIN λd
WAVELENGTH | NOMINAL λd
WAVELENGTH | MAX λd
WAVELENGTH | UNITS | |--------|----------------------|--------------------------|----------------------|-------| | Green | | 570 | | nm | | Yellow | | 590 | | nm | Table 5. LED Characteristics | OPERATING CONDITION | LED STATE | |---|-----------------| | Output ON and OK | Solid GREEN | | No DC power to all power supplies | OFF | | DC present / Only 12 VSB on (PS off) or PS in Hot standby state | 1Hz Blink GREEN | | DC cord unplugged; with a second power supply in parallel still with DC input power. | OFF | | Power supply warning events where the power supply continues to operate; high temp, high power, high current, slow fan. | 1Hz Blink AMBER | | Power supply critical event causing a shutdown; failure, OCP, OVP, Fan Fail | Solid AMBER | | Power supply in FW upload mode | 2Hz Blink GREEN | Table 6. LED Status ## 9. I²C / POWER MANAGEMENT BUS COMMUNICATION The PES front-end is a communication Slave device only; it never initiates messages on the I²C/SMBus by itself. The communication bus voltage and timing is defined in *Table 7* further characterized through: - The SDA/SCL IOs use 3V3 logic levels - External pull-up resistors on SDA/SCL required for correct signal edges - Full SMBus clock speed of 100 kbps - Clock stretching limited to 1 ms - SCL low time-out of >25 ms with recovery within 10 ms - Recognizes any time Start/Stop bus conditions Figure 14. Physical layer of communication interface Communication to the DSP or the EEPROM will be possible as long as the input DC voltage is provided. If no DC is present, communication to the unit is possible as long as it is connected to a life V_{SB} output or V_{7} output (provided e.g. by the redundant unit). | PARAMETER | DESCRIPTION | CONDITION | MIN | MAX | UNIT | |-----------------------------|---------------------------------------|---|-----------------------------------|---------------------------|------| | SCL / SDA | | | | | | | V_{iL} | Input low voltage | | -0.5 | 1.0 | V | | V iH | Input high voltage | | 2.3 | 3.5 | V | | V_{hys} | Input hysteresis | | 0.15 | | V | | V ₀L | Output low voltage | 3 mA sink current | 0 | 0.4 | V | | $t_{\rm r}$ | Rise time for SDA and SCL | | 20+0.1C _b ¹ | 1000 | ns | | <i>t</i> of | Output fall time ViHmin → ViLmax | $10 \text{ pF} < C_b^{-1} < 400 \text{ pF}$ | 20+0.1C _b ¹ | 300 | ns | | Á | Input current SCL/SDA | 0.1~VDD < Vi < 0.9~VDD | -10 | 10 | μΑ | | G | Internal Capacitance for each SCL/SDA | | | 50 | рF | | f sc∟ | SCL clock frequency | | 0 | 100 | kHz | | <i>R</i> _{pull-up} | External pull-up resistor | f _{SCL} ≤ 100 kHz | | $1000 \text{ ns} / C_b^1$ | Ω | | <i>t</i> hdsta | Hold time (repeated) START | f _{SCL} ≤ 100 kHz | 4.0 | | μS | | <i>t</i> Low | Low period of the SCL clock | f _{SCL} ≤ 100 kHz | 4.7 | | μs | | <i>t</i> HIGH | High period of the SCL clock | f _{SCL} ≤ 100 kHz | 4.0 | | μS | | <i>t</i> susta | Setup time for a repeated START | f _{SCL} ≤ 100 kHz | 4.7 | | μS | | <i>t</i> _{HDDAT} | Data hold time | f _{SCL} ≤ 100 kHz | 0 | 3.45 | μS | | <i>t</i> sudat | Data setup time | f _{SCL} ≤ 100 kHz | 250 | | ns | | <i>t</i> susto | Setup time for STOP condition | f _{SCL} ≤ 100 kHz | 4.0 | | μS | | <i>t</i> BUF | Bus free time between STOP and START | f _{SCL} ≤ 100 kHz | 5 | | ms | $^{^{1}}$ Cb = Capacitance of bus line in pF, typically in the range of 10...400 pF Table 7. PC / SMBus Specification Figure 15. PC / SMBus Timing #### ADDRESS SELECTION The address for I²C communication can be configured by pulling address input pins A2, A1 and A0 either to GND (Logic Low) or leave them open (Logic High). An internal pull up resistor will cause the A2 / A1 / A0 pin to be in High Level if left open. A fixed addressing offset exists between the Controller and the EEPROM. | | • • | | I2C Ac | ldress * | |----|-----|----|------------|----------| | A2 | A1 | Α0 | Controller | EEPROM | | 0 | 0 | 0 | 0xB0 | 0xA0 | | 0 | 0 | 1 | 0xB2 | 0xA2 | | 0 | 1 | 0 | 0xB4 | 0xA4 | | 0 | 1 | 1 | 0xB6 | 0xA6 | | 1 | 0 | 0 | 0xB8 | 0xA8 | | 1 | 0 | 1 | 0xBA | 0xAA | | 1 | 1 | 0 | 0xBC | 0xAC | | 1 | 1 | 1 | 0xBE | 0xAE | ^{*} The LSB of the address byte is the R/W bit Table 8. Address and Protocol Encoding ## 9.1 CONTROLLER AND EEPROM ACCESS The controller and the EEPROM in the power supply share the same I²C bus physical layer (see *Figure 16*) and can be accessed under different addresses, see ADDRESS SELECTION. The SDA/SCL lines are connected directly to the controller and EEPROM which are supplied by internal 3V3. The EEPROM provides 256 bytes of user memory. None of the bytes are used for the operation of the power supply. Figure 16. I2C Bus to DSP and EEPROM ## 9.2 EEPROM PROTOCOL The EEPROM follows the industry communication protocols used for this type of device. Even though page write / read commands are defined, it is recommended to use the single byte write / read commands. #### WRITE The write command follows the SMBus 1.1 Write Byte protocol. After the device address with the write bit cleared a first byte with the data address to write to is sent followed by the data byte and the STOP condition. A new START condition on the bus should only occur after 5ms of the last STOP condition to allow the EEPROM to write the data into its memory. #### **READ** The read command follows the SMBus 1.1 Read Byte protocol. After the device address with the write bit cleared the data address byte is sent followed by a repeated start, the device address and the read bit set. The EEPROM will respond with the data byte at the specified location. ### 9.3 POWER MANAGEMENT BUS PROTOCOL The Power Management Bus is an open standard protocol that defines means of communicating with power conversion and other devices. For more information, please see the System Management Interface Forum web site at: www.powerSIG.org. Power Management Bus command codes are not register addresses. They describe a specific command to be executed. The PES2200-12-080xD supply supports the following basic command structures: - Clock stretching limited to 1 ms - SCL low time-out of >25 ms with recovery within 10 ms - Recognized any time Start/Stop bus conditions #### **WRITE** The write protocol is the SMBus 1.1 Write Byte/Word protocol. Note that the write protocol may end after the command byte or after the first data byte (Byte command) or then after sending 2 data bytes (Word command). In addition, Block write commands are supported with a total maximum length of 255 bytes. See PES2200-12-080xD Power Management Bus Communication Manual BCA.00279 for further information. # READ The read protocol is the SMBus 1.1 Read Byte/Word protocol. Note that the read protocol may request a single byte or word. In addition, Block read commands are supported with a total maximum length of 255 bytes. See PES2200-12-080xD Power Management Bus Communication Manual BCA.00279 for further information. Asia-Pacific Europe, Middle East **North America** +86 755 298 85888 +353 61 49 8941 #### 9.4 POWER SUPPLY BLACK BOX RECORDER The power supply shall save the latest data and other pertinent data into nonvolatile memory when a critical event
shuts down the power supply. This data shall be accessible via the Power Management Bus communication interface with an external source providing power to the 12Vstby output. Critical Events to trigger an update to the Event Recorder includes: - Output OVP - Output OCP - Input OV/UV Fault - Fan fault - OTF - Other faults to cause output shutdown. Refer to BCA.00279 Power Management Bus Communication Application Note for further information about the Power Management Bus commands to support this function. ## 9.5 FIRMWARE UPDATE The power supply shall have the capability to update its firmware via the Power Management Bus interface while it is in standby mode. This FW can be updated when in the system and in standby mode and outside the system with power applied to the 12Vstby pins. BPS standard GUI supports the firmware upgrade function. ## 9.6 GRAPHICAL USER INTERFACE Bel Power Solutions provides with its "I²C Utility" a Windows® XP/Vista/Win7 compatible graphical user interface allowing the programming and monitoring of the PES2200-12-080xD Front-End. The utility can be downloaded on: belfuse.com/power-solutions and supports both the PSMI and Power Management Bus protocols. The GUI allows automatic discovery of the units connected to the communication bus and will show them in the navigation tree. In the monitoring view the power supply can be controlled and monitored. If the GUI is used in conjunction with the YTM.00103 Evaluation Board it is also possible to control the PSON_L pin(s) of the power supply. Figure 17. Monitoring dialog of the FC Utility # 10. TEMPERATURE AND FAN CONTROL To achieve best cooling results sufficient airflow through the supply must be ensured. Do not block or obstruct the air-flow at the rear of the supply by placing large objects directly at the output connector. As the PES2200-12-080ND is pro-vided with a rear to front airflow (NAF), which means the air enters through the DC-output of the supply and leaves at the DC-inlet. The PES2200-12-080xD supply has been designed for horizontal operation. The fan inside of the supply is controlled by a microprocessor. The rpm of the fan is adjusted to ensure optimal supply cooling and is a function of output power and the inlet temperature. The fan oscillation shall be controlled such that associated sound power level variation falls within a band of 2.0 dBA (roughly 10% mean speed). This condition may be treated as steady state fan speed condition. After the new load and/or cooling condition steady state is established, transition to the steady state fan speed shall take place within 60s. The PES2200-12-080xD provides access via I²C to the measured temperatures of in total 3 sensors within the power supply, see *Table 9*. The microprocessor is monitoring these temperatures and if warning threshold of one of these sensors is reached it will set fan to maximum speed. If temperatures continue to rise above shut down threshold the main output V1 (or VSB if auxiliary converter is affected) will be disabled. At the same time the warning or fault condition is signalized accordingly through LED, PWOK_H and SMB_ALERT_L. | TEMPERATURE SENSOR | DESCRIPTION / CONDITION | POWER
MANAGEMENT
BUS REGISTER | WARNING
THRESHOLD | SHUT DOWN
THRESHOLD | |------------------------|--|-------------------------------------|---------------------------|---------------------------| | Inlet air temperature | Sensor located on control board close to DC end of power supply (NAF) Sensor located on main board close to DC front of power supply (RAF) | 8Dh | 61°C | 65°C | | Syn rectifier Mosfet 1 | Sensor located close to Syn rectifier
Mosfet group 1 | 8Eh | 100°C (NAF)
90°C (RAF) | 105°C (NAF)
95°C (RAF) | | Syn rectifier Mosfet 2 | Sensor located close to Syn rectifier Mosfet group 2 | EAh | 100°C (NAF)
90°C (RAF) | 105°C (NAF)
95°C (RAF) | Table 9. Temperature Sensor Location and Thresholds Figure 18. Airflow Direction Figure 19. Fan Speed vs. Main Output Load Comment: The fan minimum speed is 6000 RPM. # 11. ELECTROMAGNETIC COMPATIBILITY # 11.1 IMMUNITY | PARAMETER | DESCRIPTION / CONDITION | CRITERION | |---------------------------------|--|-----------| | ESD Contact Discharge | EN 55024: 2010/A1: 2015 using the IEC 61000-4-2: 2001-04 test standard and performance criteria B defined in Annex B of CISPR 24. | В | | Radiated Electromagnetics Filed | EN 55024: 2010/A1: 2015 using the IEC 61000-4-3: 2002-09 test standard and performance criteria A defined in Annex B of CISPR 24 | Α | | Burst | EN 55024: 2010/A1: 2015 using the IEC 61000-4-4: 2004-07 test standard and performance criteria B defined in Annex B of CISPR 24 | В | | Surge* | EN 55024: 2010/A1: 2015: 2001-04 the power supply shall be tested with the system for immunity; 1kV line to ground and 1kV line to line. | В | | RF Conducted Immunity | IEC / EN 61000-4-6, Level 3, 10 Vrms, CW, 0.15 80 MHz | Α | ^{*} The pass criteria include: No unsafe operation is allowed under any condition; all power supply output voltage levels to stay within proper spec levels; No change in operating state or loss of data during and after the test profile; No component damage under any condition The power supply shall be tested in accordance with IEC 61000-4-5: 2005 per EN55024: 2010/A1: 2015 and meet criterial B defined in session 7 of EN55024: 2010/A1: 2015, more criteria details refer to *Table 10*. | LEVEL | DESCRIPTION | |-------|---| | Α | During and after the test, the EUT shall continue to operate as intended without operator intervention. | | В | Degradation of performance is allowed during test and the EUT shall continue to operate as intended without operator intervention after the test. And EUT can recover without operator intervention when test condition removed. | | С | Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls or cycling of the power to the EUT by the user in accordance with the manufacturer's instructions. | Table 10. Performance Criteria #### 11.2 EMISSION | PARAMETER | DESCRIPTION / CONDITION | CRITERION | |---------------------|--|-----------| | Conducted Emission | EN 55032:2015 / CISPR 32:2015: 0.15 30 MHz, QP and AVG, single power supply | Class A | | Conducted Emission | EN 55032:2015 / CISPR 32:2015: 0.15 30 MHz, QP and AVG, 2 power supplies in a system | Class A | | De diete d'Englasie | EN 55032:2015 / CISPR 32:2015: 30 MHz 1 GHz, QP, single power supply | Class A | | Radiated Emission | EN 55032:2015 / CISPR 32:2015: 30 MHz 1 GHz, QP,
2 power supplies in a system | Class A | # 12. SAFETY / APPROVALS Maximum electric strength testing is performed in the factory according to IEC/EN 62368-1, and UL/CSA 62368-1. Input-tooutput electric strength tests should not be repeated in the field. Bel Power Solutions will not honor any warranty claims resulting from electric strength field tests. | PARAMETER | DESCRIPTION / CONDITION | NOTE | |--------------------------|--|--| | Agency Approvals | Approved to latest edition of the following standards: UL/CSA 62368-1 (USA / Canada) IEC/EN 62368-1 (International / Europe) CB Certificate & Report, IEC62368-1 (report to include all country national deviations) CE - Low Voltage Directive 2014/35/EC (Europe) GB4943.1- CNCA Certification (China) | Approved | | Isolation Strength | Input (L/N) to chassis (PE) Input (L/N) to output Output to chassis | Basic
Basic
None (Direct connection) | | Electrical Strength Test | Input to output
Input to chassis | 1500 VDC
1500 VDC | Comment: All printed wiring boards and all connectors meet UL94V-0 level. ## 13. ENVIRONMENTAL Power supply shall meet the thermal requirements under the load and environmental condition identified in each table. Even though the table addresses only the exhaust air temperature, all other components in the power supply shall also meet their temperature specifications and lifetime requirements. The power supply must meet UL enclosure requirements for temperature rise limits. All sides of the power supply with exception to the air exhaust side must be classified as "Handle, knobs, grips, etc. held for short periods of time only". In case the exit air temperature requirement cannot be met, the power supply must have a warning label for high touch temperature that is in compliance with IEC/UL 60950-1 and additionally 85°C rated power cords must also be used with this power supply. | ITEM | DESCRIPTION | MIN | MAX | UNITS | |------------------|---|-----|------|--------| | Load | Maximum typical load under redundant configurations | | 1320 | W | | Top1 | Operating temperature range; 900 m | 0 | 55 | °C | | Top2 | Operating temperature range; 3050 m | 0 | 50 | °C | | Texit | Maximum exit air temperature | | 68 | °C | | Tnon-op | Non-operating temperature range | -40 | 70 | °C | | Altitude1 | Maximum operating altitude; 50°C inlet | | 3050 | meters | | Altitude2 | Maximum operating altitude; 55°C inlet | | 900 | meters | | Acoustical
Noise | A-weighted sound power, 25°C, 50% Load | | 65 | dB | Table 11. Requirements for Redundant Power Supply Configuration | ITEM | DESCRIPTION | MIN | MAX | UNITS | |------------------|--|-----|------|--------| | Load | Maximum rated output load | | 2200 | W | | Top1 | Operating temperature range; 900 m | 0 | 55 | °C | | Top2 | Operating temperature range; 3050 m | 0 | 50 | °C | | Texit | Maximum exit air temperature | | 68 | °C | | Tnon-op | Non-operating temperature range | -40 | 70 | °C | | Altitude1 | Maximum operating altitude; 50°C inlet | | 3050 | meters | | Altitude2 | Maximum operating altitude; 55°C inlet | | 900 | meters | | Acoustical Noise | A-weighted sound power, 25°C, 50% Load | | 65 | dB | Table 12. Requirements for Non-Redundant Power Supply Configuration # 13.1 HUMIDITY **Operating:** To 85% relative humidity (non-condensing) **Non-Operating:** To 95% relative humidity (non-condensing) NOTE: 95% relative humidity is achieved with a dry bulb temperature of 55°C and a wet bulb temperature of 54°C. # 13.2 ALTITUDE **Operating:** To 3050 m (Maximum operating altitude 5000 meters and the Maximum operating temperature to 40°C.) **Non-operating:** To 15200 m # 13.3 SHOCK AND VIBRATION #### 13.3.1 RANDOM VIBRATION - OPERATING Sample Size: For all product classes and categories, the minimum number of samples shall be 3 devices. **Test Method:** The devices shall be tested per the methods described in IEC 60068-2-64, Environmental testing - Part 2: Test methods - Test Fh: Vibration, broad-band random (digital control) and guidance. Each device shall be tested in three axes for a minimum of 30 minutes per axis. The device shall be powered for the duration of the test at nominal input voltage and no load. For operating vibration testing, see *Figure 20*. Figure 20. Class II PCDs Operating Vibration Test: Acceleration vs Frequency The total acceleration for Class II PCDs is approximately 2.4 grms, see *Table 13*. | Frequency | Class I Acceleratio | Class I Acceleration Specification | | ion Specification | |-----------|--------------------------------------|------------------------------------|------------|-------------------| | Hz | (m/s ²) ² /Hz | G ² /Hz | (m/s²)²/Hz | G²/Hz | | 10 | 0.022 | 0.000229 | 0.1 | 0.00046 | | 30 | 0.20 | 0.0021 | 2 | 0.0052 | | 200 | 0.20 | 0.0021 | 2 | 0.0052 | | 500 | 0.0052 | 0.000054 | 0.2 | 0.0001 | | | Grms = 0.71 | | Grms : | = 2.40 | Table 13. Operation Vibration Profile Charts Pass Criteria: Each power and signal output of each unit under test shall be monitored continuously during the test. Sampling at greater than 1 millisecond periods is not permitted. The units under test shall operate within specification during the entire test. #### 13.3.2 RANDOM VIBRATION - NON-OPERATING **Sample Size:** For all product categories and product classes, the minimum number of samples shall be 3 devices packaged in their fully populated, bulk shipping package or individual packages of product. Test Method: The devices shall be tested per the methods described in IEC 60068-2-64, Environmental testing – Part 2: Test methods - Test Fh: Vibration, broad-band random (digital control) and guidance, with the acceleration spectral density curves provided in this document. The products are in the shipping packaging for this test. For non-operating vibration testing, see *Table 14*. Each shipping package shall be tested in three axes for a minimum of 30 minutes per axis. The total acceleration for Class II PCDs is approximately 3.8Grms, see Table 14. | Frequency | Class I Acceleration | Class I Acceleration Specification | | tion Specification | |-------------|----------------------|------------------------------------|------------|--------------------| | Hz | (m/s²)²/Hz | G²/Hz | (m/s²)²/Hz | G²/Hz | | 5 | 1 | 0.01 | 5 | 0.0052 | | 200 | 1 | 0.01 | 5 | 0.0052 | | 500 | 0.03 | 0.003 | 0.3 | 0.003 | | Grms = 1.90 | | Grms = | = 3.80 | | Table 14. Non-Operating Vibration Profile Charts Pass Criteria: At the conclusion of all three axes of testing, the products shall be unpackaged and visually inspected for any signs of damage. Only minor cosmetic damage that does not affect form, fit or function is allowed. Bent connector pins, damaged switches, damaged handles, labels with impaired readability, or bent or deformed sheet metal are not allowed. All units shall also pass a functional test. There are no requirements on the condition of the shipping package. #### 13.3.3 SHOCK - OPERATING Sample Size: For all product types and product classes, the minimum number of samples shall be three (3) devices. **Test Method:** The devices shall be tested per the methods described in IEC 60068-2-27, Environmental Testing-Part 2.27 Test Ea and guidance: Shock. Each tested device shall be exposed to three shocks in each of three axes. The amplitude of each shock shall be no less than 30 g with a half sine wave shape and a duration of 11 ms. Pass Criteria: Each power and signal output of each unit under test shall be monitored continuously during the test. Sampling at greater than 1 millisecond periods is not permitted. The units under test shall operate within specification during the entire test. # 13.3.4 THERMAL SHOCK (SHIPPING) **Non-operating:** -40°C to +70°C, 50 cycles, 30°C/min. \geq transition time \geq 15°C/min., duration of exposure to temperature extremes for each half cycle shall be 30 minutes. # **14. RELIABILITY** | PARAMETER | DESCRIPTION / CONDITION | MIN | NOM | MAX | UNIT | |--------------------------------|--|-----|-----|-----|------| | MTBF Mean time between failure | T _A = 40°C, 75% load, according Telcordia SR-332, issue 3 | 250 | | | kh | Comment: All components de-rating follows IPC9592B. # 15. MECHANICAL | PARAMETER | DESCRIPTION / CONDITION | MIN | NOM | MAX | UNIT | |------------|-------------------------|-----|-----|-----|------| | Dimensions | Width | | 80 | | mm | | | Heigth | | 40 | | mm | | | Depth | | 195 | | mm | | Weight | | | 1.0 | | kg | Figure 21. Top and side view Figure 22. Front view Figure 23. Rear view # **16. CONNECTORS** Figure 25. Height of fixed screw (Unit: mm) | PARAMETER | DESCRIPTION / CONDITION | MIN | NOM | MAX | UNIT | |------------------------------|---|-----|-----|-----|------| | Input connector | Copper busbar with M5 bolt | | | | | | Mating Input connector screw | M5xP0.8mm nut (contain the washer) Recommended torque force for the M5 nut is 10-12kgf-cm | | | | | | Input DC cord requirement | Wire size | | 6 | | AWG | | Mating Input connector | Manufacturer : PANDUIT
Manufacturer P/N : LCD6-14A-L(straight)
Or LCD6-14AF-L(right angle) Or Equivalent | | | | | | Output connector | PCB card edge | | | | | | Mating output connector | Manufacturer: FCI Electronics Manufacturer P/N: 10130248-005LF or 10139371-1824CLF or equivalent, Refer to <i>Table 15</i> and <i>Table 16</i> respectively for the pin assignment, as the FCI pin definition of the 2 connectors are different | | | | | Figure 26. Mating output connector For Mating output connector 10130248-005LF Pin assignment (picture refer to Figure 26) | PIN | SIGNAL NAME | DESCRIPTION | Mating Sequence* | |------------------------|-------------|--|------------------| | P1 ~ P10
P29 ~ P36 | GND
GND | Power and signal ground (return) | 1 | | P11 ~ P18
P19 ~ P28 | V1
V1 | +12 VDC main output | 2 | | S1
S2 | A0
A1 | I ² C address selection input | 1
1 | | S3, S4 | VSB | +12 V Standby positive output | 1 | | S5 | Hot_Standby | Hot standby Bus | 1 | | S6 | ISHARE | Analog current share bus | 1 | | S7 | VIN_OK_H | Input OK signal output, active-high | 1 | | S8 | PRESENT_L | Power supply seated, active-low | 3 | | S9 | A2 | I ² C address selection input | 1 | | S10 ~ S15 | GND | Power and signal ground (return) | 1 | | S16 | PWOK_H | Power OK signal output, active-high | 1 | | S17 | V1_SENSE | Main output positive sense | 1 | | S18 | V1_SENSE_R | Main output negative sense | 1 | | S19 | SMB_ALERT_L | SMB Alert signal output, active-low | 1 | | S20 | PSON_L | Power supply on input, active-low | 3 | | S21, S22 | VSB | +12 V Standby positive output (as pins S3, S4) | 1 | | S23 | SCL | I ² C clock signal line | 1 | | S24 | SDA | I ² C data signal line | 1 | ^{*1=}First, 3=Last, given by different card edge finger pin lengths and mating connector pin arrangement. Table 15. Output connector pin assignment Figure 27. Mating output connector For Mating output connector 10139371-1824CLF Pin assignment (picture refer to Figure 27) | | <i>,</i> | grant rezident in decignment (proteine refer to rigare 27) | | |------------|--------------|--|------------------| | PIN | SIGNAL NAME | DESCRIPTION | Mating Sequence* | | P1 ~ P5 | GND | Power and signal ground (return) | 1 | | P15 ~ P18 | GND | , over and eightar ground (retain) | · | | P6 ~ P9 | V1 | +12 VDC main output | 2 | | P10 ~ P14 | V1 | 112 VBO main output | _ | | S1 | A0 | I ² C address selection input | 1 | | S2 | A1 | · | 1 | | S3, S4 | VSB | +12 V Standby positive output | 1 | | S 5 | Hot_ Standby | Hot standby Bus | 1 | | S6 | ISHARE | Analog current share bus | 1 | | S7 | VIN_OK_H | Input OK signal output, active-high | 1 | | S8 | PRESENT_L | Power supply seated, active-low | 3 | | S9 | A2 | I ² C address selection input | 1 | | S10 ~ S15 | GND | Power and signal ground (return) | 1 | | S16 | PWOK_H | Power OK signal output, active-high | 1 | | S17 | V1_SENSE | Main output positive sense | 1 | | S18 | V1_SENSE_R | Main output negative sense | 1 | | S19 | SMB_ALERT_L | SMB Alert signal
output, active-low | 1 | | S20 | PSON_L | Power supply on input, active-low | 3 | | S21, S22 | VSB | +12 V Standby positive output (as pins S3, S4) | 1 | | S23 | SCL | I ² C clock signal line | 1 | | S24 | SDA | I ² C data signal line | 1 | | | | | | ^{*1=}First, 3=Last, given by different card edge finger pin lengths and mating connector pin arrangement. Table 16. Output connector pin assignment Asia-Pacific Europe, Middle East North America ## 17. ACCESSORIES | ITEM | DESCRIPTION | ORDERING PART
NUMBER | SOURCE | |--|---|-------------------------|-----------------------------| | | I ² C Utility Windows XP/Vista/7 compatible GUI to program, control and monitor PES2200-12-080xD Front-Ends (and other I ² C units) | N/A | belfuse.com/power-solutions | | O CO | Evaluation Board Connector board to operate PES2200-12-080xD. Includes an on- board USB to I ² C converter (use I ² C Utility as desktop software). | YTM.00103 | belfuse.com/power-solutions | It is recommend adding each a width 18 mm x thickness 1 mm x length 35 mm busbar for 12 V+/- on loading board as such high output current density. Maximum electric strength testing is performed in the factory according to IEC/EN 60950, and UL 60950. Input-to-output electric strength tests should not be repeated in the field. Bel Power Solutions will not honor any warranty claims resulting from electric strength field tests. ## 18. REVISION HISTORY | DATE | REVISION | SECTION | CHANGES / UPDATES | PREPARED BY | ECO/MCO
REFERENCE
NO. | |------------|----------|-------------------|---|--------------------------|-----------------------------| | 2019/01/09 | 1 | / | First release | Zaipeng Wei | C90810 | | 2019/03/29 | 2 | / | Update abbreviation | V. Stefancova | C92313 | | 2019/09/16 | 3 | /
5
5
16 | Add PES220 ND family model Change definition of current share deviation Change Dynamic Load start point Update Input connector drawings | Zaipeng Wei
Xiao Xue | C95044 | | 2020/11/24 | А | 8.10
9.4
16 | Change LED indicator state Add POWER SUPPLY BLACK BOX RECORDER Update output connector picture | Jemrry Zhang
Xiao Xue | CO106637 | | 2023/08/23 | В | 12,15 | Update the safety approve standard at section 12 Delete the tolerance spec note at section 15 | Chad Cai | | # For more information on these products consult: tech.support@psbel.com **NUCLEAR AND MEDICAL APPLICATIONS** - Products are not designed or intended for use as critical components in life support systems, equipment used in hazardous environments, or nuclear control systems. **TECHNICAL REVISIONS** - The appearance of products, including safety agency certifications pictured on labels, may change depending on the date manufactured. Specifications are subject to change without notice.