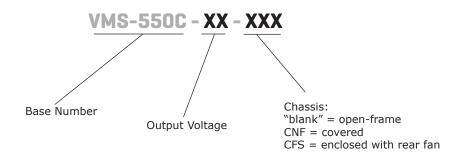


DESCRIPTION: AC-DC POWER SUPPLY SERIES: VMS-550C

FEATURES

- 90~264 Vac and 127~370 Vdc input voltage range
- 3" x 5" open-frame footprint
- 320 W under natural convection, 550 W with airflow
- -40 ~ 70 °C temperature range
- active PFC
- 5 Vsby, 12 Vfan, power good, remote sense
- suitable for BF applications
- certified to 60601 safety standard
- designed to meet 60335 & 61558 safety requirements


ROHS C	US	C	E	CA	

MODEL		utput oltage	output current	output power ²	ripple and noise ³	efficiency⁴
	(Vdc)	range ¹ (Vdc)	max (A)	max (W)	max (mVp-p)	typ (%)
VMS-550C-12	12	11.4~12.6	41.60	499.2	200	91.0
VMS-550C-15	15	14.25~15.75	33.30	499.5	200	92.0
VMS-550C-24	24	22.8~25.2	22.90	549.6	200	93.0
VMS-550C-27	27	25.65~28.35	20.40	550.8	200	93.5
VMS-550C-36	36	34.2~37.8	15.30	550.8	200	94.0
VMS-550C-48	48	45.6~50.4	11.46	550.0	200	94.0

1. When adjusting the output voltage care should be taken never to exceed the stated output power or output current of the unit. 2. With 25 CFM of forced air cooling.

3. At full load, nominal input, 20 MHz bandwidth oscilloscope, tip & barrel method, output terminated with 47 µF electrolytic and 0.1 µF ceramic capacitors. 4. At 230 Vac.

PART NUMBER KEY

INPUT

parameter	conditions/description	min	typ	max	units
voltage	ac input	90		264	Vac
voltage	dc input	127		370	Vdc
frequency		47		63	Hz
ourropt	at 90/115 Vac			6.5	Α
current	at 230 Vac			3.0	Α
inwich current	at 115 Vac, cold start		50		Α
inrush current	at 230 Vac, cold start		80		Α
	at 264 Vac				
leakage current	contact leakage current			0.1	mA
	earth leakage current			0.5	mA
	at 115 Vac, full load	0.98			
power factor correction	at 230 Vac, full load	0.95			
no load power consumption	at 230 Vac, PS-ON signal held low (output disabled)			0.5	W

OUTPUT

parameter	conditions/description	min	typ	max	units
	12, 15, 24 Vdc output models			6,000	μF
	27 Vdc output model			4,000	μF
output capacitance	36 Vdc output model			3,000	μF
	48 Vdc output model			2,000	μF
	full load				
initial set point accuracy	12,15, 24, 27 Vdc output models		±2		%
	all other output models		±1		%
line regulation	rated load ±0.5			%	
load regulation	0 ~ 100% load		±1		%
hald up time	at 115 Vac	10			ms
hold-up time	at 230 Vac	10			ms
temperature coefficient			±0.03		%/°C
fan power of 12 Vdc/0.5A				6	W

PROTECTIONS

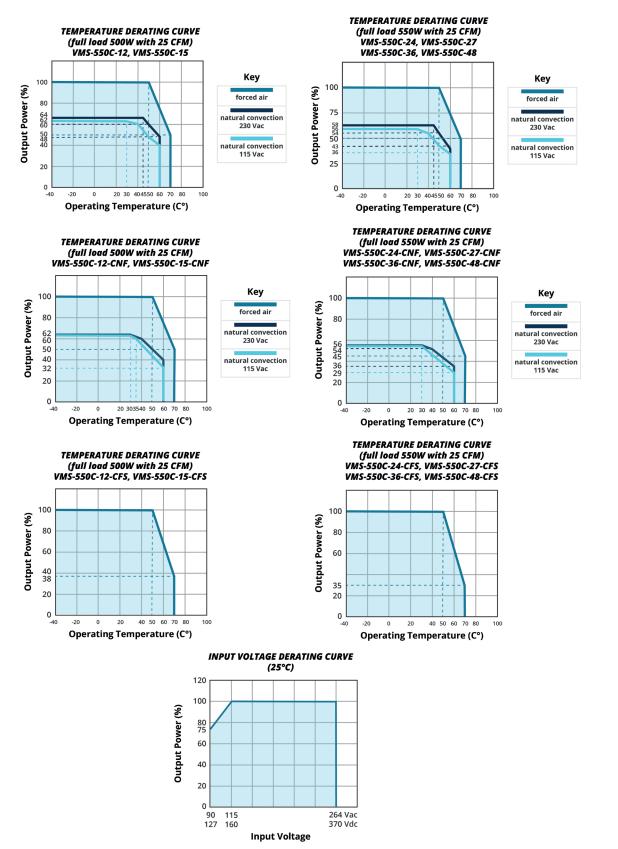
.....

parameter	conditions/description	min	typ	max	units
	output shutdown, latching				
	12 Vdc output model			15.6	Vdc
	15 Vdc output model			19.5	Vdc
over voltage protection	24 Vdc output model			31.2	Vdc
2 .	27 Vdc output model			35.1	Vdc
	36 Vdc output model			46.8	Vdc
	48 Vdc output model			60.0	Vdc
over current protection	auto recovery, hiccup	105			%
short circuit protection	continuous, auto recovery, hiccup, recovery time <5 s				
over temperature protection auto recovery					

SAFETY & COMPLIANCE

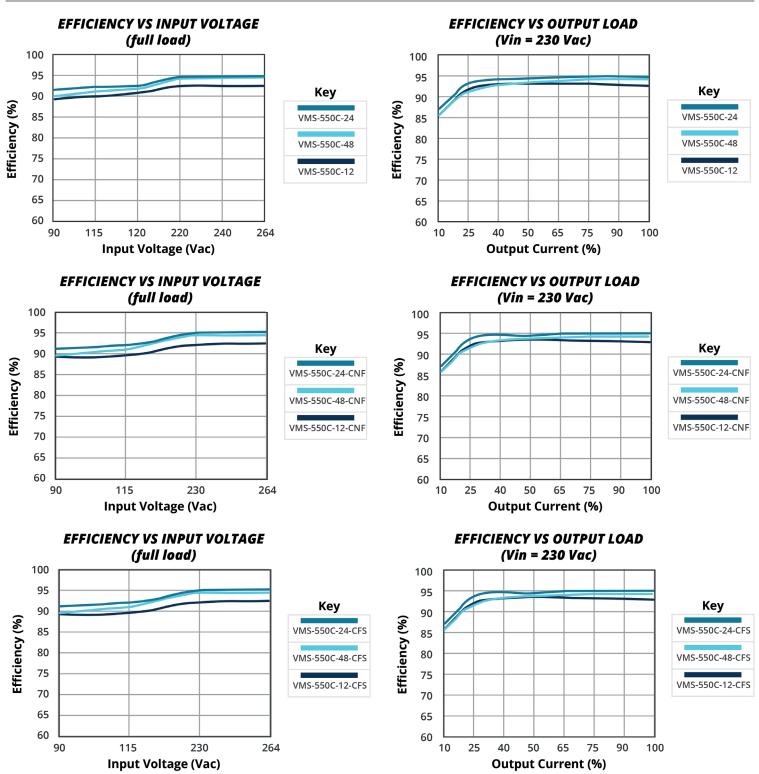
parameter	conditions/description	min	typ	max	units
	input to output, 1 min, <5mA	4,000			Vac
isolation voltage	input to ground, 1 min, <5mA	2,000			Vac
	output to ground, 1 min, <5mA	1,500			Vac
	input to output	2 x MOPP			
isolation level	input to ground	1 x MOPP			
	output to ground	1 x MOPP			
safety approvals certified to 60601					
safety class	Class I				
conducted emissions⁵	EN55011(CISPR11) CLASS B				
radiated emissions⁵	EN55011(CISPR11) CLASS B				
narmonic current	IEC/EN61000-3-2 CLASS A and CLASS D				
flicker	IEC/EN61000-3-3				
ESD	IEC/EN61000-4-2 Contact ±8KV/Air ±15KV, perf	f. Criteria A			
radiated immunity	IEC/EN61000-4-3 10V/m, perf. Criteria A				
EFT/burst	IEC/EN61000-4-4 ±2KV, perf. Criteria A				
surge	IEC/EN61000-4-5 line to line \pm 2KV, line to groun	nd ±4KV, perf. Crit	eria A		
conducted immunity	IEC/EN61000-4-6 10Vr.m.s, perf. Criteria A				
voltage dips and interruptions IEC/EN61000-4-11 0%, 70% perf. Criteria B					
MTBF	as per MIL-HDBK-217F at 25°C 200,000				hours
RoHS	yes				

Note: 5. The power supply is considered a component of the end system. All EMC performance has been tested on a metal plate with the dimensions 360 x 360 x 1 mm. The power supply must be integrated into the end system for proper electromagnetic compatibility testing.


ENVIRONMENTAL

.....

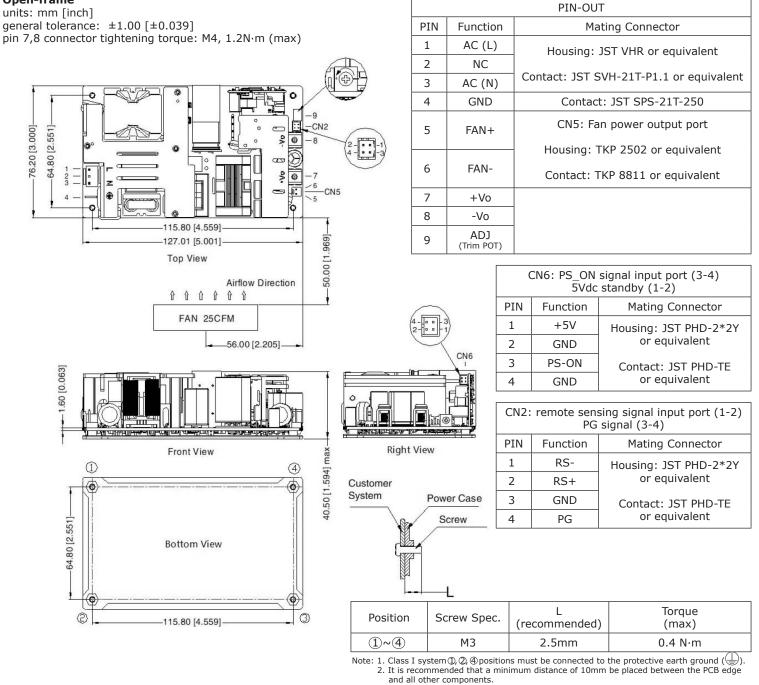
parameter	conditions/description	min	typ	max	units
operating temperature	see derating curves	-40		70	°C
storage temperature		-40		85	°C
operating humidity	non-condensing	20		90	%
storage humidity	non-condensing	10		95	%


.....

DERATING CURVES

Note: With an AC input voltage between 90 ~ 115 Vac and a DC input between 127 ~ 160 Vdc the output power must be derated as per the temperature derating curves.

EFFICIENCY CURVES

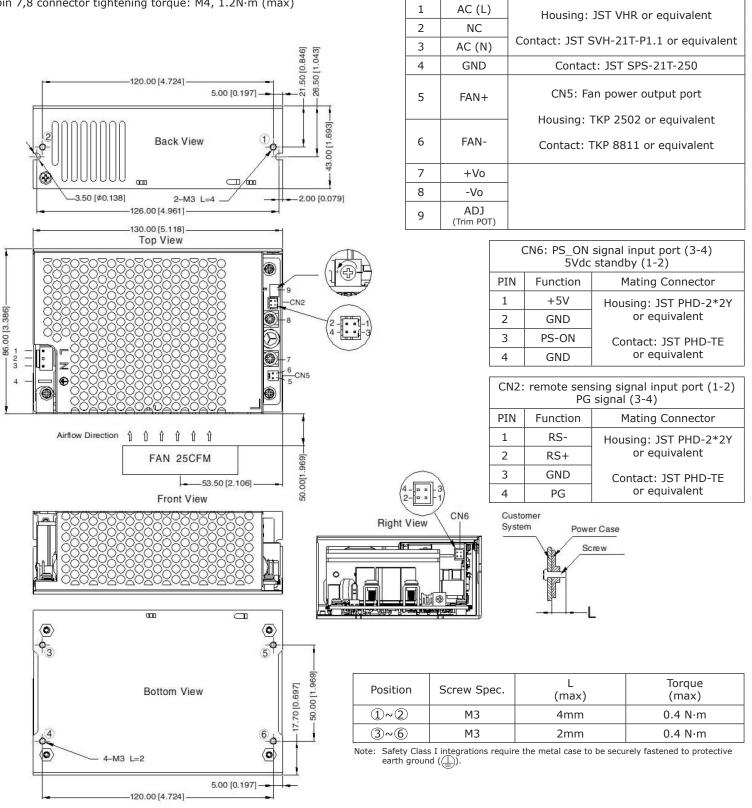


MECHANICAL

parameter	conditions/description	min	typ	max	units
dimensions	open frame models: 127 × 76.2 × 40.5 [5.0 x 3.				mm mm
umensions	covered models: 130.0 × 86.0 × 43.0 [5.118 x 3.385 x 1.692 inch] with rear fan: 160.0 × 86.0 × 43.0 [6.299 x 3.385 x 1.692 inch]				mm
	open frame models		490		g
weight	covered models		605		g
	with rear fan		645		g
cooling	natural convection or 25 CFM forced air				

MECHANICAL DRAWING

Open-frame


PIN-OUT

Mating Connector

MECHANICAL DRAWING (CONTINUED)

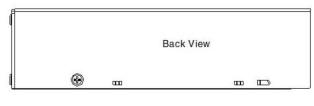
Covered

units: mm [inch] general tolerance: ±1.00 [±0.039] pin 7,8 connector tightening torque: M4, 1.2N·m (max)

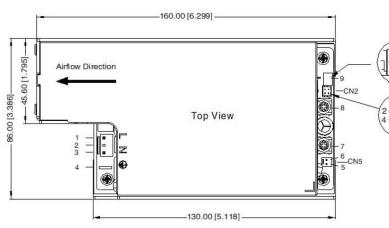
PIN

Function

MECHANICAL DRAWING (CONTINUED)

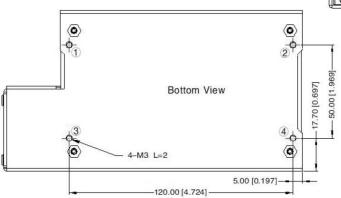

with rear fan:

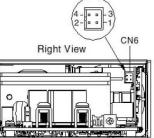
units: mm [inch] general tolerance: ±1.00 [±0.039]

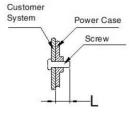

pin 7,8 connector tightening torque: M4, 1.2N·m (max)

Position	Screw Spec.	L (max)	Torque (max)
1~4	M3	2mm	0.4 N∙m

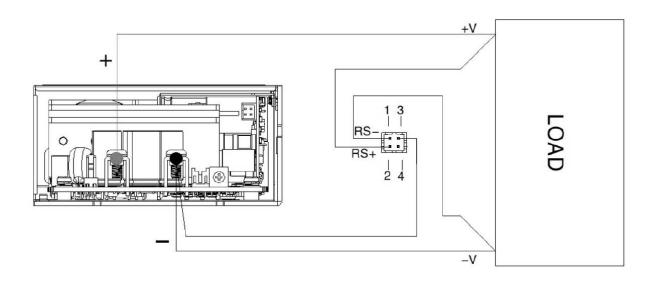
Note: Safety Class I integrations require the metal case to be securely fastened to protective earth ground (___)).




		PIN-OUT
PIN	Function	Mating Connector
1	AC (L)	Housing: JST VHR or equivalent
2	NC	
3	AC (N)	Contact: JST SVH-21T-P1.1 or equivalent
4	GND	Contact: JST SPS-21T-250
5	FAN+	CN5: Fan power output port
6	FAN-	Housing: TKP 2502 or equivalent Contact: TKP 8811 or equivalent
7	+Vo	
8	-Vo	
9	ADJ (Trim POT)	



CN6: PS_ON signal input port (3-4) 5Vdc standby (1-2)					
PIN	Function Mating Connector				
1	+5V	Housing: JST PHD-2*2Y			
2	GND	or equivalent			
3	PS-ON	Contact: JST PHD-TE			
4	GND	or equivalent			



CN2:	CN2: remote sensing signal input port (1-2) PG signal (3-4)				
PIN	Function Mating Connector				
1	RS-	Housing: JST PHD-2*2Y			
2	RS+	or equivalent			
3	GND	Contact: JST PHD-TE			
4	PG	or equivalent			

REMOTE SENSE

Remote Sense signals (RS+ and RS-) can be used to compensate for voltage drops that occur within the output power cables. RS+ and RS- should always be routed as a twisted pair and never shorted together or reversed otherwise permanent damage may occur.

REVISION HISTORY

rev.	description	date
1.0	initial release	12/22/2021
1.01	safeties updated	03/01/2023

The revision history provided is for informational purposes only and is believed to be accurate.

a bel group

Headquarters 20050 SW 112th Ave. Tualatin, OR 97062 800.275.4899

Fax 503.612.2383 cui.com techsupport@cui.com

CUI offers a two (2) year limited warranty. Complete warranty information is listed on our website.

.....

CUI reserves the right to make changes to the product at any time without notice. Information provided by CUI is believed to be accurate and reliable. However, no responsibility is assumed by CUI for its use, nor for any infringements of patents or other rights of third parties which may result from its use.

.....

CUI products are not authorized or warranted for use as critical components in equipment that requires an extremely high level of reliability. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.