

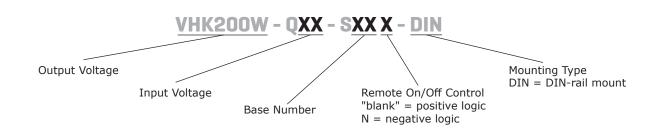
DESCRIPTION: DC-DC CONVERTER SERIES: VHK200W-DIN

FEATURES

- up to 200 W isolated output
- rugged metal enclosure with integrated heat sink
- 4:1 input range (10~36 Vdc, 18~75 Vdc)
- single output from 12~48 Vdc
- 1,500 Vdc isolation
- over current, over temperature, over voltage, and short circuit protections
- remote on/off

ROHS CE

- efficiency up to 88%
- comes with DIN-rail mount



MODEL	input voltage	output voltage	output current	output power	ripple and noise ¹	efficiency
	range (Vdc)	(Vdc)	max (A)	max (W)	max (mVp-p)	typ (%)
VHK200W-Q24-S12-DIN	10 ~ 36	12	16.7	200	150	84
VHK200W-Q24-S15-DIN	10 ~ 36	15	13.3	200	150	84
VHK200W-Q24-S24-DIN	10 ~ 36	24	8.3	200	240	84
VHK200W-Q24-S28-DIN	10 ~ 36	28	7.14	200	280	87
VHK200W-Q24-S48-DIN	10 ~ 36	48	4.2	200	480	87
VHK200W-Q48-S12-DIN	18 ~ 75	12	16.7	200	150	86
VHK200W-Q48-S15-DIN	18 ~ 75	15	13.3	200	150	86
VHK200W-Q48-S24-DIN	18 ~ 75	24	8.3	200	240	86
VHK200W-Q48-S28-DIN	18 ~ 75	28	7.14	200	280	87
VHK200W-Q48-S48-DIN	18 ~ 75	48	4.2	200	480	88

Note: 1. Ripple and noise are measured at full load, 20 MHz BW with 10µF tantalum capacitor and 1µF ceramic capacitor across output. The 48 Vdc output models require a 10uF aluminum capacitor and 1uF ceramic capacitor across the output. 2. An external input capacitor of 470µF for 24 Vdc input models and 47µF for 48 Vdc input models is recommended to reduce input ripple voltage.

PART NUMBER KEY

.....

INPUT

parameter	conditions/de	escription	min	typ	max	units
operating input voltage	24 Vdc input m 48 Vdc input m		10 18	24 48	36 75	Vdc Vdc
	24 Vdc input	power up power down		9.5 8.5		Vdc Vdc
under voltage shutdown	48 Vdc input	power up power down		17 16		Vdc Vdc
	nocitivo logio	models ON (>3.5 Vdc or open circuit)				
	positive logic	models OFF (0~1.2 Vdc)				
CTRL ¹	nonstive logic	models ON (0~1.2 Vdc)				
	negative logic models OFF (>3.5 Vdc or open					
filter	pi filter					
input fuse	40A time delay fuse for 24 Vin models, 20A time delay fuse for 48 Vin models					

Note: 1. Open collector refer to -Vin

OUTPUT

parameter	conditions/description	min	typ	max	units
	12, 15, & 24 V output models			2,200	μF
maximum capacitive load	28 V output models	100		2,200	μF
	48 V output models	47		2,200	μF
line regulation ²	measured from low line to high line			±0.2	%
load regulation ²	measured from zero load to full load			±0.2	%
voltage accuracy				±1.5	%
adjustability			±10		%
switching frequency			250		kHz
transient response	25% step load change			500	μs
temperature coefficient			±0.03		%/°C

Note: 2. A 100 µF aluminum capacitor is required on the output for the 28 Vdc output models. A 47 µF aluminum capacitor is required on the output for 48 Vdc output models.

PROTECTIONS

parameter	conditions/description	min	typ	max	units
short circuit protection	continuous				
over current protection	at 90% output voltage	110		160	%
over voltage protection		115		140	%
over temperature protection	shutdown		110		°C

SAFETY AND COMPLIANCE

parameter	conditions/description	min	typ	max	units
isolation voltage	for 1 minute: input to output; input to case; output to case	1,500			Vdc
isolation resistance		10			MΩ
RoHS	2011/65/EU (CE)				

ENVIRONMENTAL

.....

parameter	conditions/description	min	typ	max	units
operating temperature	see derating curve	-40		85	°C
storage temperature		-55		105	°C

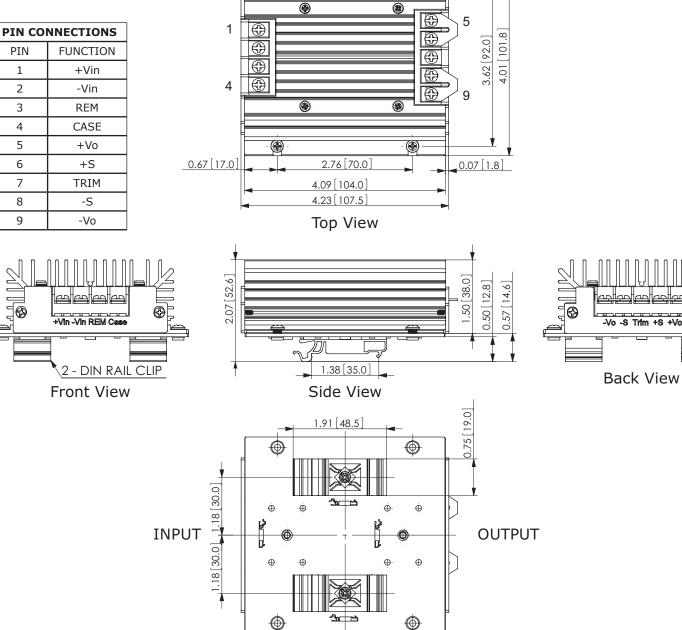
.....

MECHANICAL

parameter	conditions/description	min	typ	max	units
dimensions	4.23 x 4.01 x 2.07 (107.5 x 101.8 x 52.6 mm)				inch
case material	steel and aluminum extrusion				
weight			651		g

۲

0.18[4.5]

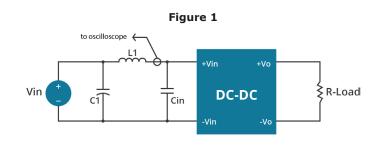

۲

MECHANICAL DRAWING

units: inch[mm] tolerance: X.XX = $\pm 0.02[\pm 0.5]$ X.XXX = $\pm 0.010[\pm 0.25]$

wire range: 22~12 AWG screw size: #6-32 mounts to TS35 rails

.....


Bottom View

DERATING CURVES

TEST CONFIGURATION

.....

	External components					
for 24 Vdc input models						
L1 1.2µH						
Cin	470μF, ESR < 0.2Ω at 100 KHz					
for 48 Vdc input models						
L1 12µH						
Cin 47µF, ESR < 0.7Ω at 100 KHz						

.....

Note: Input reflected-ripple current is measured with an inductor L1 to simulate source impedance.

EMC RECOMMENDED CIRCUITS



 Table 2

 Class A Recommended Components

Model	C11	C21	C31	CY1 ²	CY2 ²	L1	L2
VHK200W-Q24-S12	120 µF/100 V	120 µF/100 V	NC	NC	NC	0.5 mH	SHORT
VHK200W-Q24-S15	47 μF/100 V	47 μF/100 V	NC	NC	NC	0.5 mH	SHORT
VHK200W-Q24-S24	100 µF/100 V	100 µF/100 V	NC	NC	NC	0.5 mH	SHORT
VHK200W-Q24-S28	100 µF/100 V	100 µF/100 V	NC	NC	NC	0.5 mH	SHORT
VHK200W-Q24-S48	100 µF/100 V	100 µF/100 V	100 µF/100 V	680 pF/2 KV	680 pF/2 KV	1.0 mH	NC
VHK200W-Q48-S12	82 μF/100 V	82 μF/100 V	NC	NC	NC	0.5 mH	SHORT
VHK200W-Q48-S15	82 μF/100 V	82 μF/100 V	NC	NC	NC	0.5 mH	SHORT
VHK200W-Q48-S24	82 µF/100 V	82 μF/100 V	NC	NC	NC	0.7 mH	SHORT
VHK200W-Q48-S28	150 µF/100 V	150 µF/100 V	NC	NC	NC	0.5 mH	SHORT
VHK200W-Q48-S48	100 µF/100 V	100 µF/100 V	100 µF/100 V	680 pF/2 KV	680 pF/2 KV	1.0 mH	NC

Notes: 1. Aluminum capacitors. 2. Ceramic capacitors.

.....

.....

APPLICATION NOTES

1. **Output Voltage Trimming** Leave open if not used.

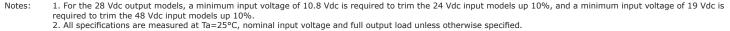

Trim up Trim down +V_{OUT} +5 R _{TRIM-UP} Trim $\mathsf{R}_{\mathsf{TRIM-DOWN}} \clubsuit \mathsf{R}_{\mathsf{LOAD}}$ R_{LOAD} Trim -V_{OUT} $\Delta\% = \left(\frac{V_{\text{OUT}} - V_{\text{OUT, NOM}}}{V_{\text{OUT, NOM}}}\right) 100$ $\Delta\% = \left(\frac{V_{\text{OUT, NOM}} - V_{\text{OUT}}}{V_{\text{OUT, NOW}}}\right) 100$ **Trim-Down Formula Trim-Up Formula** (for all 12, 15, 24, & 28¹ Vdc Output Models) (for all 12, 15, 24, & 281 Vdc Output Models) $R_{\text{TRIM}} = \left(\frac{5.11V_{\text{OUT, NOM}}(100 + \Delta\%)}{1.225 \times \Delta\%} - \frac{511}{\Delta\%} - 10.22\right) (K \Omega)$ $R_{TRIM} = \left(\frac{511}{\Lambda_{04}} - 10.22\right) (K \Omega)$ **Trim-Up Formula Trim-Down Formula** (for all 48 Vdc Output Models) (for all 48 Vdc Output Models) $R_{\text{TRIM}} = \left(\frac{20V_{\text{OUT, NOM}} (100 + \Delta\%)}{1.225 \times \Lambda\%} - \frac{2000}{\Delta\%} - 40\right) (K \Omega)$ $R_{\text{TRIM}} = \left(\frac{2000}{\Lambda 06} - 40\right) (K \Omega)$

Figure 4

Formula for Trim up

Note: $R_{\mbox{\tiny TRIM}}$ is the external resistor in $K\Omega$ $V_{\mbox{\tiny OUT, NOM}}$ is the nominal output voltage $V_{\mbox{\tiny OUT}}$ is the desired output voltage

Formula for Trim down

2. All specifications are measured at Ia=25°C, nominal input voltage and full output load unless otherwise specified.

REVISION HISTORY

rev.	description	date
1.0	initial release	12/16/2013
1.01	changed DIN-rail mount	06/16/2014
1.02	trim equation updated	11/13/2020
1.03	derating curve and circuit figures updated	09/07/2021
1.04	trim diagram updated	07/19/2022
1.05	output voltage trimming updated	06/15/2023

The revision history provided is for informational purposes only and is believed to be accurate.

Headquarters 20050 SW 112th Ave. Tualatin, OR 97062 800.275.4899

Fax 503.612.2383 cui.com techsupport@cui.com

CUI offers a two (2) year limited warranty. Complete warranty information is listed on our website.

.....

CUI reserves the right to make changes to the product at any time without notice. Information provided by CUI is believed to be accurate and reliable. However, no responsibility is assumed by CUI for its use, nor for any infringements of patents or other rights of third parties which may result from its use.

CUI products are not authorized or warranted for use as critical components in equipment that requires an extremely high level of reliability. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.