

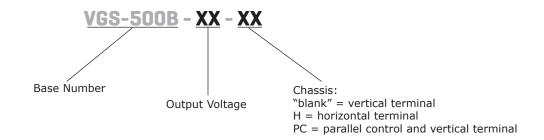
date 08/27/2024

page 1 of 11

DESCRIPTION: AC-DC POWER SUPPLY **SERIES:** VGS-500B

FEATURES

- 500 W continuous output power
- peak power of 600 W for 5 seconds
- certified to UL/EN 62368
- designed to meet EIC/EN 60335-1
- 3" x 5" footprint
- active PFC
- temperature range -40 °C to 85 °C with derating
- operating altitude up to 5000 m
- short-circuit, over-current, over-voltage & over-temperature protection
- 12 V, 0.5 A fan supply
- 5 V, 1 A standby supply
- remote on/off
- remote output voltage sensing
- parallel output operation



MODEL	output voltage	output current¹	output power	ripple and noise²	efficiency ³
	typ (Vdc)	max (A)	max (W)	max (mVp-p)	typ (%)
VGS-500B-12	12	41.67	500	120	92.5
VGS-500B-18	18	27.78	500	150	93.5
VGS-500B-24	24	20.83	500	150	94.5
VGS-500B-28	28	17.86	500	200	94.5
VGS-500B-30	30	16.67	500	200	94.5
VGS-500B-36	36	13.89	500	200	94.5
VGS-500B-48	48	10.42	500	250	94.5

Notes:

- 1. With 21 CFM of forced air cooling 2. At full load, nominal input, 20 MHz bandwidth oscilloscope, output terminated with 10 μ F electrolytic and 0.1 μ F ceramic capacitors.
- 3. Efficiency is measured at full load, and 230 Vac input.
 4. All specifications are typical at nominal input, full load at 25°C unless otherwise noted.

PART NUMBER KEY

INPUT

parameter	conditions/description	min	typ	max	units
voltage		80	100~240	264	Vac
frequency		47	50~60	63	Hz
current	at full load, 100 Vac input			6	А
inrush current	at 240 Vac, cold start at 25 °C		8.5		А
leakage current	earth touch			0.3 0.1	mA mA
power factor correction	at 230 Vac input		0.97		
no load power consumption			0.5		W

OUTPUT

parameter	conditions/description	min	typ	max	units
line regulation	high line to full line			±0.5	%
load regulation	10 % to 100 % load			±1	%
	at 80 Vac ~ 264 Vac input (see derating curve) 12 Vdc output model	11.88 17.82	12 18	12.12 18.18	Vdc Vdc
output voltage set point	18 Vdc output model 24 Vdc output model 28 Vdc output model	23.76 26.6	24 28	24.24 29.4	Vdc Vdc
	30 Vdc output model 36 Vdc output model 48 Vdc output model	28.5 35.64 47.52	30 36 48	31.5 36.36 48.48	Vdc Vdc Vdc
hold-up time	at 115 Vac, full load 16			ms	
adjustability	via Vadj trim pot (see mechanical drawing)		±5	%	
peak power ⁵	at 115 Vac & 230 Vac, full load, 25 °C		120		%
current sharing accuracy	50 % to 100 % load		±5		%
DC on cianal6	power on power off (PS on, GND open)	0	4	2	Vdc Vdc
PS on signal ⁶	power on (PS on, GND short) power off (PS on, GND open)		10 0		mA mA
DE cional	at 80 Vac to 264 Vac, full load TTL high after power set up	100		500	ms
PF signal	at 80 Vac to 264 Vac, full load TTL low before Vo is below 90% of rated value	1	10		ms
switching frequency	at maximum rated power		65		kHz
fan output voltage ⁷	12 Vdc / 0.5 A		12		Vdc
standby	5 Vdc / 1 A (forced air & convection cooling)				

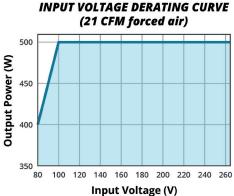
Notes:

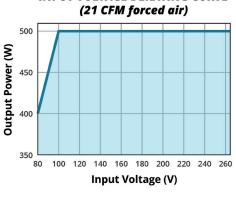
- 5. Peak power should be less than 5 seconds, with a maximum 10 % duty cycle, peak power function by 120% load 5 seconds and 75% load 45 seconds. 6. Absolute maximum rating: 60V. 7. Fan output can only operate normal when the stand-by output is above 0.5A.

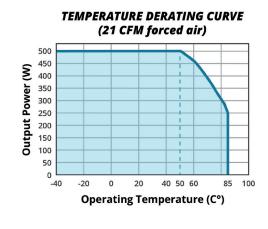
PROTECTIONS

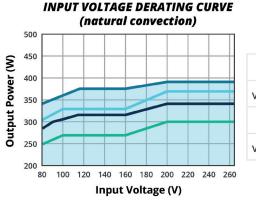
1 110120110110					
parameter	conditions/description	min	typ	max	units
over voltage protection	latching (ac recycle to reset)				
	12 Vdc output model			16	Vdc
	18 Vdc output model			30	Vdc
	24, 28, 30 Vdc output models			35	Vdc
	36 Vdc output model			50	Vdc
	48 Vdc output model			63	Vdc
over current protection	auto recovery	120		190	%
short circuit protection	auto recovery				

over temperature protection auto recovery

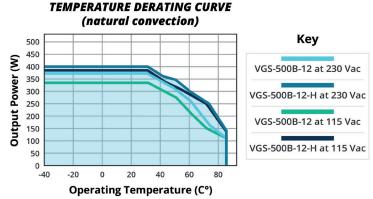

SAFETY & COMPLIANCE

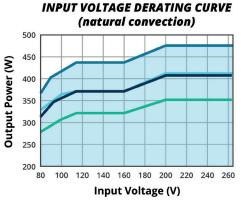

parameter	conditions/description	min	typ	max	units	
	at 115 Vac & 230 Vac, full load, 25 °C					
	12 Vdc output model			42,900	μF	
	18 Vdc output model			28,600	μF	
capacitive load	24 Vdc output model			20,800	μF	
capacitive load	28 Vdc output model			18,000	μĘ	
	30 Vdc output model			16,600	μF	
	36 Vdc output model			14,000	μ <u>F</u>	
	48 Vdc output model			10,800	μF	
	input to output 1 minute			4,000	Vac	
isolation voltage	input to ground 1 minute			1,800	Vac	
	output to ground for 1 minute			1,800	Vac	
safety approvals	certified to 62368-1: UL, EN					
safety class	class I					
EMI/EMC	EN 55032:2015+AC:2016, EN 61000-6-3 2 EN 61000-6-4:2007+A1:2011, 47 CFR FCC EN 61204-3:2000, EN 61000-3-2:2014, EN	Part 15 Subpart B (C	,	}		
			0012 Class B			
conducted emissions	EN 55032:2015+AC:2016, EN 61000-6-3 2 EN 61000-6-4:2007+A1:2011, 47 CFR FCC					
radiated emissions	EN 55032:2015+AC:2016, EN 61000-6-3 2 EN 61000-6-4:2007+A1:2011, 47 CFR FCC		,	3		
ESD	IEC 61000-4-2:2008, air discharge: ±8 kV,	contact discharge: ±	4 kV, perf. Cr	riteria A		
radiated immunity	IEC 61000-4-3:2006+A1:2007+A2:2010, p	IEC 61000-4-3:2006+A1:2007+A2:2010, perf. Criteria A				
EFT/burst	IEC 61000-4-4:2012, ±1 kV, ±2 kV, perf. C	riteria A				
surge	IEC 61000-4-5:2014+A1:2017, line to neut perf. Criteria A	ral: ±0.5 kV, ±1 kV, l	ine to ground	d: ±0.5 kV, ±	1kV, ±2 kV,	
conducted immunity	IEC 61000-4-6:2013+COR1:2015, perf. Cri	teria A				
PFMF	IEC 61000-4-8:2009, perf. Criteria A					
voltage dips	IEC 61000-4-11:2004+A1:2017, dip: 30 %	reduction, dip > 95	% reduction,	perf. Criteria	4	
voltage interruptions	IEC 61000-4-11:2004+A1:2017, > 95 % re	eduction, perf. Criteria	а В	<u> </u>		
MTBF	as per MIL-HDBK-217F at 25°C		200,000		hours	
RoHS	yes					

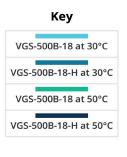

ENVIRONMENTAL

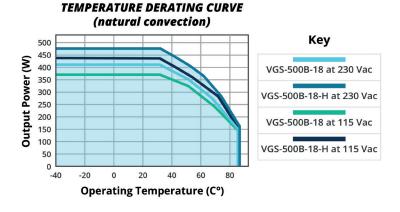

parameter	conditions/description	min	typ	max	units
operating temperature	see derating curves	-40		85	°C
maximum case temperature	center of the base plate	-40		85	°C
storage temperature		-40		85	°C
operating humidity	non-condensing	0		93	%
shock	MIL-STD-810F table 516.5, table 516.5-I, 10ms, each axis 3 times (\pm X, \pm Y, \pm Z axes)		75		g
vibration	MIL-STD-810F table 514.5C-VIII, 15~2000 Hz, X, Y, Z axes, 1 hour (each axis), total 3 hours		4		g
altitude				5,000	m

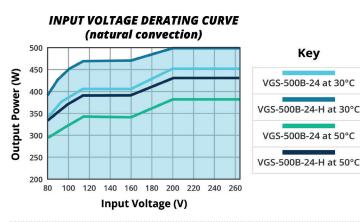

DERATING CURVES

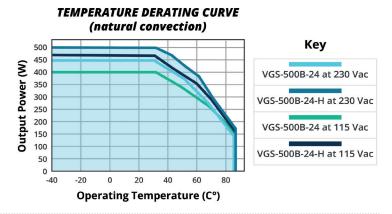


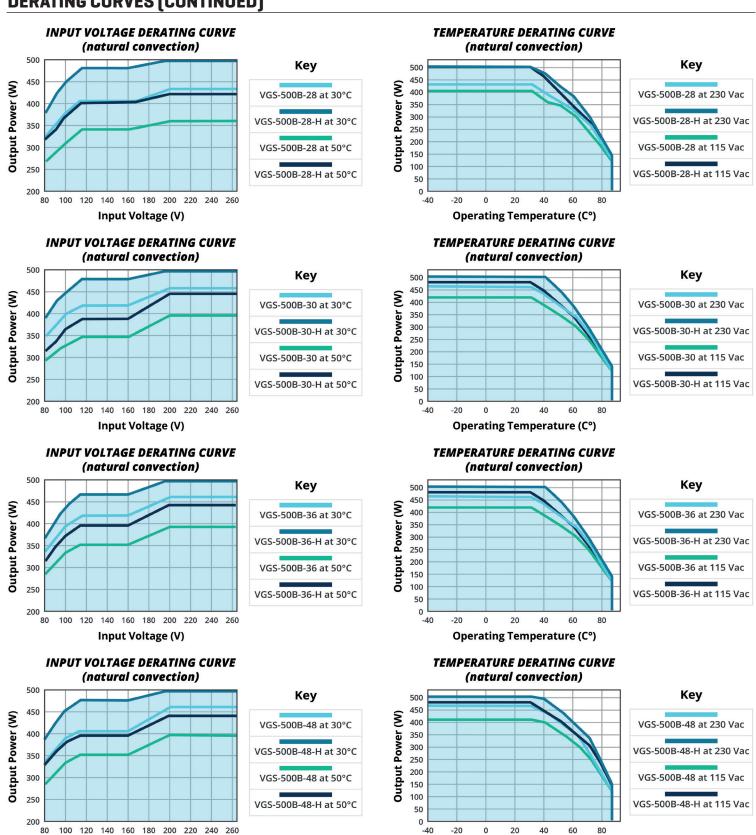


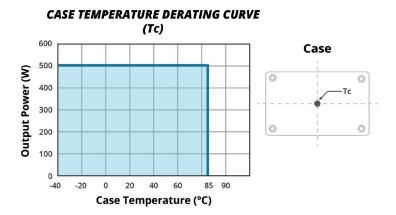




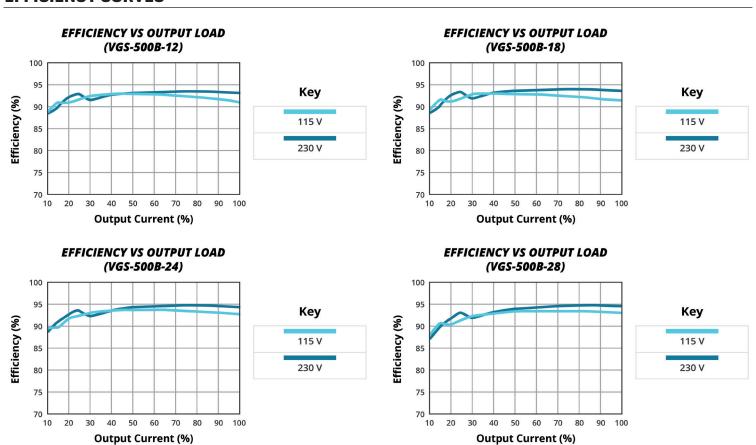






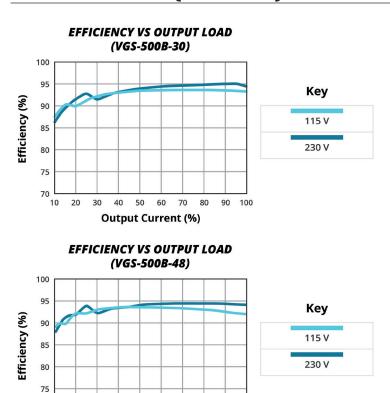

DERATING CURVES (CONTINUED)

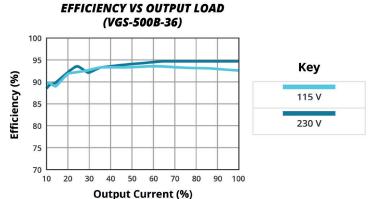
Input Voltage (V)



Operating Temperature (C°)

DERATING CURVES (CONTINUED)




EFFICIENCY CURVES

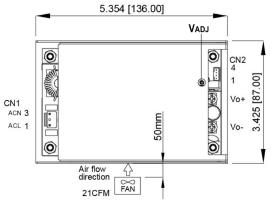
EFFICIENCY CURVES (CONTINUED)

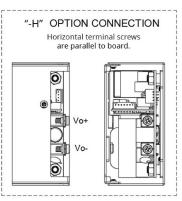
Output Current (%)

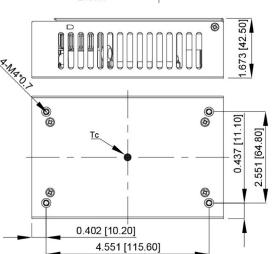
MECHANICAL						
parameter	conditions/description	min	typ	max	units	
dimensions	5.354 x 3.425x 1.673 inches [136.00 x 87.00 x 42.50 mm]			inch		
weight			635		g	

MECHANICAL DRAWING

tolerance: inches: $x.xxx = \pm 0.02$ mm: $x.xx = \pm 0.5$

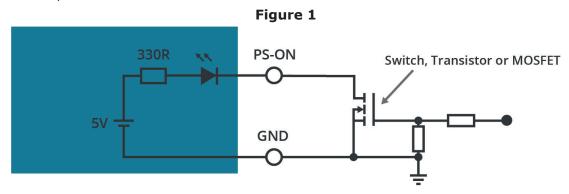

AC	AC input connector (CN1): JST B2P3-VH or equivalent					
PIN	Function	Mating Housing	Terminal			
1	AC (L)					
2	-	JST VHR-3N or equivalent	JST SVH-41T-P1.1 or equivalent			
3	AC (N)	or equivalent	or equivalent			


DC Output Connector (CN2): TKP P110I-04 or equivalent					
PIN	Function	Mating Housing	Terminal		
1	GND				
2	+5VSB	JST PHR-4	JST SPH-002T-P0.5L		
3	GND	or equivalent	or equivalent		
4	+12V FAN				


DC Output Connector (CN3):TKP P110L-07 or equivalent					
PIN	Function	Mating Housing	Terminal		
1	GND				
2	PF				
3	FAN-EN				
4	PS-ON	JST PHR-7	JST SPH-002T-P0.5L		
5	-Sense	or equivalent	or equivalent		
6	+Sense				
7	NC or PC (option)				

Note: Pin 7 is PC only in models with parallel control and vertical terminal.

DC Output Connector: KANG YANG PCB-58M4 or equivalent			
Function	Screw Locked Torque		
-Vo	M4 7KFG-CM		
+Vo	M4 /KrG-CM		

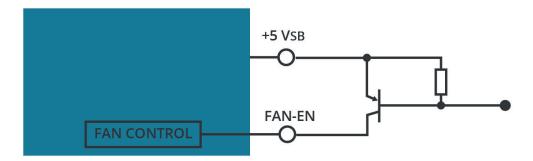

If the jumper on pins 3 $\&\,4$ is removed and replaced incorrectly or not at all, issues affecting the function of the part may arise. Note:

PS ON/OFF REMOTE CONTROL AND FAN CONTROL

The PS-ON remote control is provided in CN3 pin 4. The diagram and control function are shown as follow:

Power ON: VPS-ON \leq 2 V, IPS-ON \geq 10 mA (PS-ON and GND short, IPS-ON = 10 mA typical)

Power OFF: Open circuit, VPS-ON = 4V



The fan control is provided in CN3 pin 3. The control function and diagram are shown as follow:

Fan ON: VFAN-EN ≥ 1 V

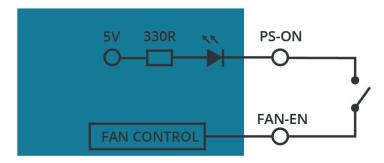

Fan OFF: Open circuit, VFAN-EN = 0

Figure 2

When the PS-ON remote control function is not used, connect a short circuit between the pin PS-ON and FAN-EN.

Figure 3

Product is supplied with remote control and fan control disabled via a jumper between PS-ON and FAN-EN (see Figure 3). To use these functions remove jumper and refer to Figures 1 and 2.

PARALLEL CONTROL AND CURRENT SHARING

The optional PC pin may be used to connect multiple power supplies in parallel for current sharing (see Figure 4). For proper operation, only power supplies with the same output voltage should be connected in parallel¹, the total output power should be limited to 90% of the total rated power², and the remote sensing feature should not be utilized³. For reliable operation, it is also suggested that the remote on/off feature be used to synchronize the outputs during turn on and turn off.

Figure 4 Connection diagram for parallel operation and current sharing

- 1. Output voltage of all power supplies should be within 0.2 V of each other at no load.

- 2. Total output power ≤ Po,rated x N x 0.9.

 3. Leave +Sense and -Sense pins open when current sharing.

 4. It is recommended to use the PS-ON pin to enable/disable the power supplies output when current sharing. See Figure 4.

REVISION HISTORY

rev.	description	date
1.0	initial release	08/16/2024
1.01	parallel control & adjustability added	08/27/2024

The revision history provided is for informational purposes only and is believed to be accurate.

Headquarters 15575 SW Sequoia Pkwy #100 Fax 503.612.2383 Portland, OR 97224 **cui**.com 800.275.4899

techsupport@cui.com

CUI offers a two (2) year limited warranty. Complete warranty information is listed on our website.

CUI reserves the right to make changes to the product at any time without notice. Information provided by CUI is believed to be accurate and reliable. However, no responsibility is assumed by CUI for its use, nor for any infringements of patents or other rights of third parties which may result from its use.