

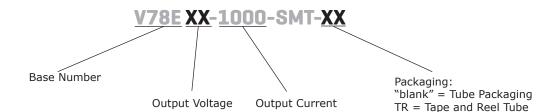
SERIES: V78E-1000-SMT **DESCRIPTION: NON-ISOLATED DC SWITCHING REGULATOR**

FEATURES

- 1 A of output current
- efficiency up to 95%
- SMT package
- industrial operating temp -40~+85°C
- industry standard footprint
- no load input current of 0.2 mA
- output short circuit protection on output

Notes:

MODEL		nput Itage ¹	output voltage	output current	output power	ripple & noise ²	efficiency ³
	typ (Vdc)	range (Vdc)	(Vdc)	max (mA)	max (W)	max (mVp-p)	typ (%)
V78E01-1000-SMT	12	4.75~32	1.5	1000	1.5	75	76
V78E02-1000-SMT	12	4.75~32	2.5	1000	2.5	75	86
V78E03-1000-SMT	24	6.5~36	3.3	1000	3.3	75	90
V78E05-1000-SMT	24	8~36	5	1000	5	75	93
V78E06-1000-SMT	24	10~36	6.5	1000	6.5	75	93
V78E09-1000-SMT	24	13~36	9	1000	9	75	94
V78E12-1000-SMT	24	16~36	12	1000	12	75	95


For input voltages higher than 30 Vdc, a 22 μF / 50 V input capacitor is required.
Tested at nominal input, 20~100% load, 20 Mhz bandwidth, with 10 μF electrolytic and 1 μF ceramic capacitor on the output. At loads below 20%, the max ripple and noise will be 150 mVp-p.

3. Measured at min Vin, full load.

4. All specifications are measured at Ta=25°C, humidity < 75%, nominal input voltage, and rated output load unless otherwise specified.

PART NUMBER KEY

.....

INPUT

parameter	conditions/description	min	typ	max	units
operating input voltage ⁵		4.75		36	Vdc
filter	capacitor filter				
input reverse polartiy protection	no				
no-load input current			0.2	1.0	mA
remote on/off ⁶	turn on (3.2~5.5 Vdc or open circuit) turn off (<0.8 Vdc) input current when switched off		0.2	1	mA

6. The voltage of remote ON/OFF pin is relative to GND pin.

OUTPUT

parameter	conditions/description	min	typ	max	units
maximum capacitive load ⁷				680	μF
voltage accuracy	at full load, input voltage range 1.5, 2.5, 3.3 Vdc output models all other models		±2 ±2	±4 ±3	% %
line regulation	at full load, input voltage range 1.5, 2.5 Vdc output models all other models		±0.3 ±0.2	±0.6 ±0.4	% %
at 10~100 % load, input voltage range load regulation 1.5, 2.5 Vdc output models all other models			±0.8 ±0.3	±1.5 ±0.6	% %
voltage adjustment	input voltage range		±10		%Vo
switching frequency	at full load, input voltage range 1.5, 2.5 Vdc output models 3.3, 5, 6.5 Vdc output models all other models		370 520 700		kHz kHz kHz
transient recovery time	at nominal input voltage, 25% load step change		0.2	1	ms
transient response deviation	at nominal input voltage, 25% load step change		50	150	mV
temperature coefficient	operating temperature -40 °C to +85 °C			±0.03	%/°C

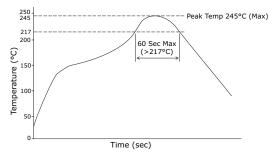
.....

PROTECTIONS

parameter	conditions/description	min	typ	max	units
short circuit protection	continuous, auto recovery				

SAFETY AND COMPLIANCE

parameter	conditions/description	min	typ	max	units			
safety approvals	designed to meet 62368: EN, BS EN							
conducted emissions	CISPR32/EN55032, class B (external circ	CISPR32/EN55032, class B (external circuit required, see Figure 3-b)						
radiated emissions	CISPR32/EN55032, class B (external circ	CISPR32/EN55032, class B (external circuit required, see Figure 3-b)						
ESD	IEC/EN61000-4-2, contact \pm 4kV, class E	IEC/EN61000-4-2, contact ± 4kV, class B						
radiated immunity	IEC/EN61000-4-3, 10V/m, class A							
EFT/burst	IEC/EN61000-4-4, \pm 1kV, class B (extern	nal circuit required, see F	igure 3-a)					
surge	IEC/EN61000-4-5, line-line \pm 1kV, class	IEC/EN61000-4-5, line-line \pm 1kV, class B (external circuit required, see Figure 3-a)						
conducted immunity	IEC/EN61000-4-6, 3 Vr.m.s, class A							
MTBF	as per MIL-HDBK-217F, 25°C	2,000,000			hours			
RoHS	yes							


.....

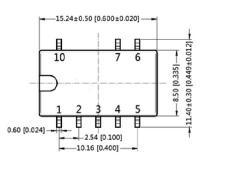
ENVIRONMENTAL

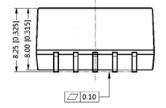
parameter	conditions/description	min	typ	max	units
operating temperature	see derating curves	-40		85	°C
storage temperature		-55		125	°C
storage humidity	non-condensing	5		95	%

SOLDERABILITY

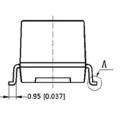
parameter	conditions/description	min	typ	max	units
reflow soldering	see reflow profile, refer to IPC/JEDEC J-STD-020D.1			245	°C

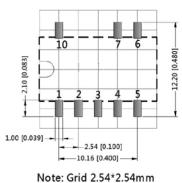
MECHANICAL

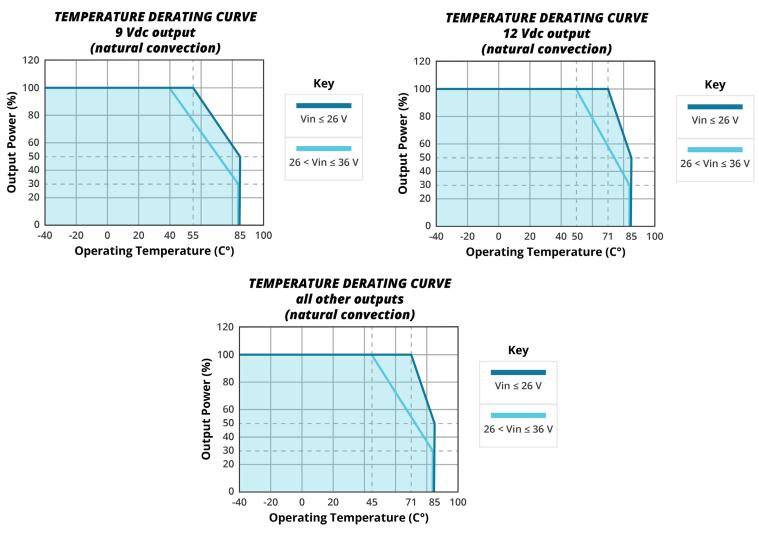

parameter	conditions/description	min	typ	max	units
dimensions	15.24 x 8.50 x 8.25 [0.60 x 0.335 x 0.325 inch]			mm	
case material	black flame-retardant and heat resistant plastic (UL94V-0)				
weight			1.7		g

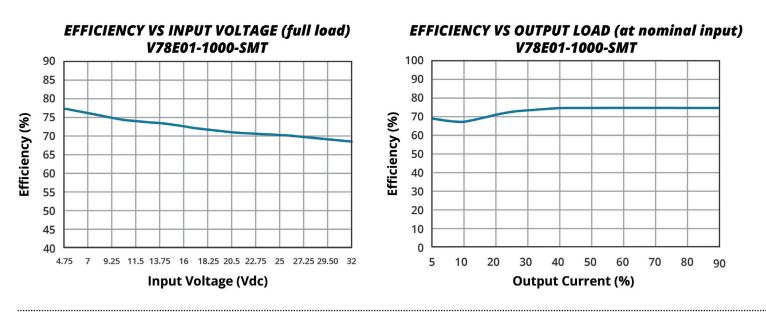

MECHANICAL DRAWING

units: mm [inch] tolerance: $\pm 0.25[\pm 0.010]$ pin section tolerance: $\pm 0.10[\pm 0.004]$

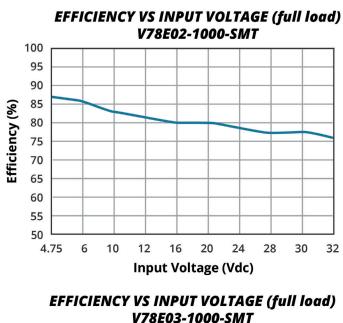

PIN CONNECTIONS					
PIN	FUNCTION				
1	+VIN				
2	+VIN				
3	GND				
4	+VOUT				
5	+VOUT				
6	V adj				
7	GND				
10	remote on/off				

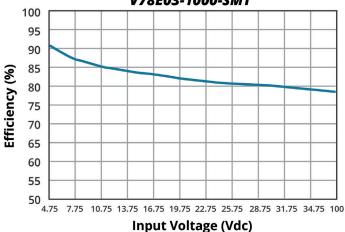

.....



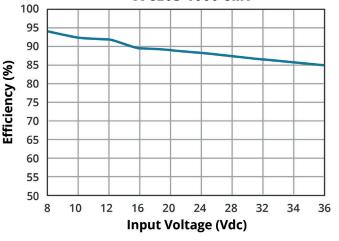


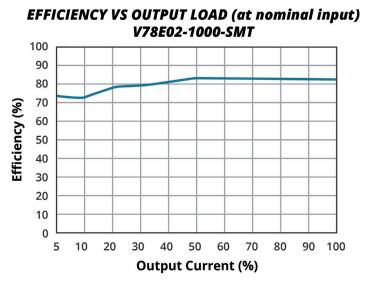
Recommended PCB Layout Top View

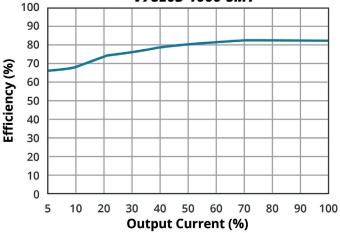

DERATING CURVES



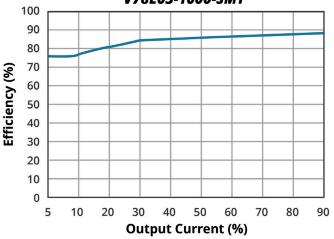
EFFICIENCY CURVES

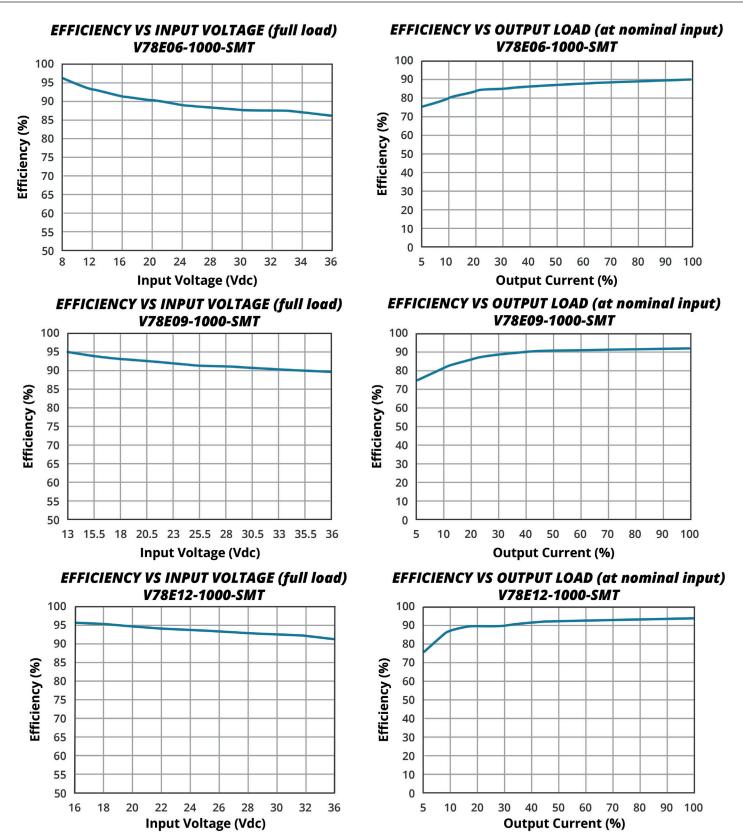


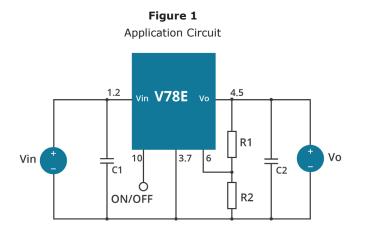

EFFICIENCY CURVES (CONTINUED)

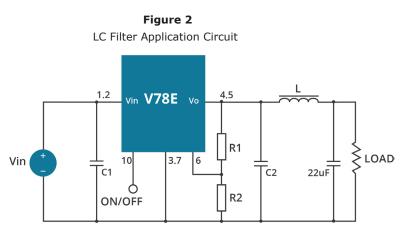


EFFICIENCY VS INPUT VOLTAGE (full load) V78E05-1000-SMT




EFFICIENCY VS OUTPUT LOAD (at nominal input) V78E03-1000-SMT


EFFICIENCY VS OUTPUT LOAD (at nominal input) V78E05-1000-SMT



EFFICIENCY CURVES (CONTINUED)

TYPICAL APPLICATION CIRCUIT

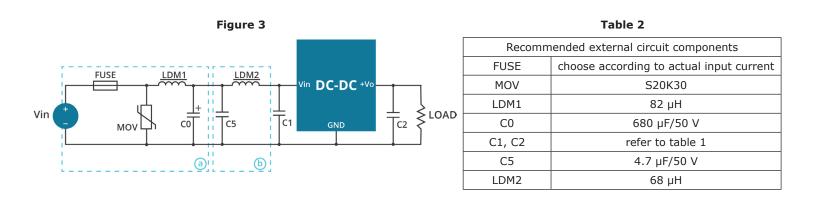
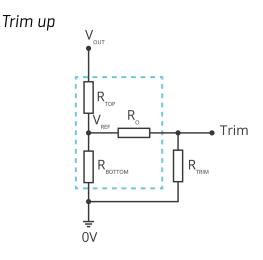
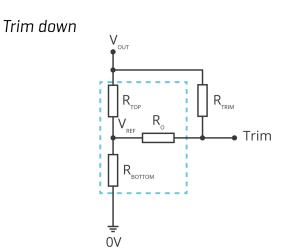


Table 1

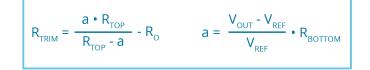
Model Number	C1 (ceramic capacitor)	C2 (ceramic capacitor)	Ra1/Ra2 (Vadj resistance)
V78E01-1000-SMT	10 µF/50 V	22 µF/10 V	
V78E02-1000-SMT	10 µF/50 V	22 µF/10 V	
V78E03-1000-SMT	10 µF/50 V	22 µF/10 V	refer to Vadj
V78E05-1000-SMT	10 µF/50 V	22 µF/16 V	resistance
V78E06-1000-SMT	10 µF/50 V	22 µF/16 V	calculation
V78E09-1000-SMT	10 µF/50 V	22 µF/16 V	
V78E12-1000-SMT	10 µF/50 V	22 µF/25 V	

EMC RECOMMENDED CIRCUIT


Note: 8. C1 & C2 are required and should be connected as close to the module pins as possible.


9. C1 & C2 can be increased as needed and the use of tantalum or low ESR electrolytic capacitors would be recommended.

10. To reduce the output ripple further, it is recommended to add an "LC" filter at the output (see figure 2) with a 10~47 µH L component.


APPLICATION NOTES

Output voltage trimming Leave open if not used.

$$R_{\text{TRIM}} = \frac{a \cdot R_{\text{BOTTOM}}}{R_{\text{BOTTOM}} - a} - R_{\text{O}} \qquad a = \frac{V_{\text{REF}}}{V_{\text{OUT}} - V_{\text{REF}}} \cdot R_{\text{TOP}}$$

Formula for Trim up

.....

Table 3

Formula for Trim down

Figure 3

V _{NOM}	R _{TOP}	R _{воттом}	R _o	V _{REF}
(Vdc)	(kΩ)	(kΩ)	(kΩ)	(V)
1.511	7.5	7.5	15	0.75
2.5	9.1	3.9	8.2	0.75
3.3	75	22	75	0.75
5	43	7.5	33	0.75
6.5	43	5.6	22	0.75
9	43	3.9	22	0.75
12	36	2.4	10	0.75

Note: 11. The 1.5 Vdc output model can only be adjusted up.

Note: Value for $R_{TOP'}$ $R_{BOTTOM'}$, R_{o} , and V_{REF} refer to Table 3 (fixed internal values). R_{TRIM} : Trim resistance

a: User-defined parameter, no actual meanings

- V_{NOM} : Nominal output voltage
- $\rm V_{\rm \tiny OUT}$: Target output voltage

REVISION HISTORY

rev.	description	date
1.0	initial release	09/12/2018
1.01	features and safety line updated	01/12/2021
1.02	product image updated, packaging removed	05/19/2021
1.03	updated derating and efficiency curves and circuit figures	06/09/2021
1.04	safeties updated	01/25/2023
1.05	pn key updated	03/24/2023

The revision history provided is for informational purposes only and is believed to be accurate.

Headquarters 20050 SW 112th Ave. Tualatin, OR 97062 800.275.4899

Fax 503.612.2383 cui.com techsupport@cui.com

CUI offers a two (2) year limited warranty. Complete warranty information is listed on our website.

.....

CUI reserves the right to make changes to the product at any time without notice. Information provided by CUI is believed to be accurate and reliable. However, no responsibility is assumed by CUI for its use, nor for any infringements of patents or other rights of third parties which may result from its use.

CUI products are not authorized or warranted for use as critical components in equipment that requires an extremely high level of reliability. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.