

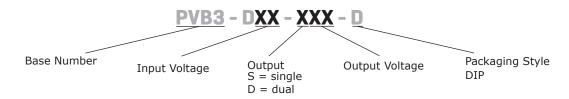
DESCRIPTION: DC-DC CONVERTER SERIES: PVB3-D

FEATURES

- 3 W isolated output
- smaller package
- single/dual regulated output
- 3,000 Vdc isolation
- short circuit protection
- temperature range (-40~105°C)
- high efficiency at light load
- efficiency up to 86%

MODEL		nput oltage	output voltage		itput rrent	output power	ripple and noise ²	efficiency
	typ (Vdc)	range (Vdc)	(Vdc)	min (mA)	max (mA)	max (W)	max (mVp-p)	typ (%)
PVB3-D5-S5-D ³	5	4.5~9	5	30	600	3	80	74
PVB3-D5-S12-D ³	5	4.5~9	12	12	250	3	80	77
PVB3-D5-S15-D ³	5	4.5~9	15	10	200	3	80	77
PVB3-D5-D ³	5	4.5~9	±5	±15	±300	3	80	76
PVB3-D5-D12-D ³	5	4.5~9	±12	±6	±125	3	80	78
PVB3-D5-D15-D ³	5	4.5~9	±15	±5	±100	3	80	78
PVB3-D12-S3-D ³	12	9~18	3.3	46	909	3	80	74
PVB3-D12-S5-D ³	12	9~18	5	30	600	3	80	81
PVB3-D12-S12-D ³	12	9~18	12	12	250	3	80	83
PVB3-D12-S15-D ³	12	9~18	15	10	200	3	80	82
PVB3-D12-S24-D ³	12	9~18	24	6	125	3	80	83
PVB3-D12-D5-D ³	12	9~18	±5	±15	±300	3	80	81
PVB3-D12-D9-D ³	12	9~18	±9	±8	±166	3	80	84
PVB3-D12-D12-D ³	12	9~18	±12	±6	±125	3	80	84
PVB3-D12-D15-D ³	12	9~18	±15	±5	±100	3	80	85
PVB3-D24-S3-D ³	24	18~36	3.3	46	909	3	80	78
PVB3-D24-S5-D ^{1,3}	24	18~36	5	30	600	3	80	81
PVB3-D24-S12-D ³	24	18~36	12	12	250	3	80	86
PVB3-D24-S15-D ³	24	18~36	15	10	200	3	80	86
PVB3-D24-S24-D ³	24	18~36	24	6	125	3	80	85
PVB3-D24-D5-D ³	24	18~36	±5	±15	±300	3	80	82
PVB3-D24-D12-D ³	24	18~36	±12	±6	±125	3	80	84
PVB3-D24-D15-D ³	24	18~36	±15	±5	±100	3	80	84
PVB3-D48-S5-D	48	36~75	5	30	600	3	80	82
PVB3-D48-S12-D	48	36~75	12	12	250	3	80	86
PVB3-D48-S15-D	48	36~75	15	10	200	3	80	86
PVB3-D48-D3-D*	48	36~75	±3.3	±22	±455	3	80	76

1. UL approved


2. Ripple and noise are measured at 20 MHz BW by "parallel cable" method with 1 μF ceramic and 10 μF electrolytic capacitors on the output.
3. Model is not CE certified.
4. * Discontinued model

MODEL		nput Oltage	output voltage		tput rrent	output power	ripple and noise ²	efficiency
(CONTINUED)	typ (Vdc)	range (Vdc)	(Vdc)	min (mA)	max (mA)	max (W)	typ (mVp-p)	typ (%)
PVB3-D48-D5-D	48	36~75	±5	±15	±300	3	80	82
PVB3-D48-D12-D	48	36~75	±12	±6	±125	3	80	84
PVB3-D48-D15-D	48	36~75	±15	±5	±100	3	80	85

Notes:

- 1. UL approved
- 2. Ripple and noise are measured at 20 MHz BW by "parallel cable" method with 1 μF ceramic and 10 μF electrolytic capacitors on the output.
 3. Model is not CE certified.
 4. * Discontinued model

PART NUMBER KEY

INPUT

parameter	conditions/description	min	typ	max	units
	5 Vdc input models	4.5	5	9	Vdc
anaustina innut valtaas	12 Vdc input models	9	12	18	Vdc
operating input voltage	24 Vdc input models	18	24	36	Vdc
	48 Vdc input models	36	48	75	Vdc
	5 Vdc input models			4.5	Vdc
ataut un valtana	12 Vdc input models			9	Vdc
start-up voltage	24 Vdc input models			18	Vdc
	48 Vdc input models			36	Vdc
	for maximum of 1 second				
	5 Vdc input models	-0.7		12	Vdc
surge voltage	12 Vdc input models	-0.7		25	Vdc
-	24 Vdc input models	-0.7		50	Vdc
	48 Vdc input models	-0.7		100	Vdc
filter	pi filter				

OUTPUT

parameter	conditions/description	min	typ	max	units
line regulation	full load, input voltage from low to high		±0.2	±0.5	%
load regulation	5% to 100% load	5% to 100% load		±0.5	%
voltage accuracy			±1	±3	%
no-load voltage accuracy			±1.5	±5	%
voltage balance ⁵	dual output, balanced loads		±0.5	±1	%
switching frequency	100% load, nominal input voltage, PFM mode	de 200			kHz
transient recovery time	25% load step change		0.5	2	ms
transient response deviation	25% load step change		±2	±5	%
temperature coeffecient	100% load		±0.02	±0.03	%/°C

Notes: 5. For dual output models, unbalanced loads should not exceed $\pm 5\%$. If $\pm 5\%$ is exceeded, it may not meet all specifications.

PROTECTIONS

parameter	conditions/description	min	typ	max	units
short circuit protection ⁶				1	S

Notes: 6. The supply voltage must be discontinued at the end of the short circuit duration

SAFETY AND COMPLIANCE

parameter	conditions/description	min	typ	max	units		
isolation voltage	input to output for 1 minute at 1 mA max.	3,000			Vdc		
isolation resistance	input to output at 500 Vdc	1,000			МΩ		
isolation capacitance	input to output at 100 kHz/0.1 V		30	50	pF		
safety approvals	certified to 60950-1: UL, EN						
conducted emissions	CISPR22/EN55022, class B (external circuit req	CISPR22/EN55022, class B (external circuit required, see Figure 1-b)					
radiated emissions	CISPR22/EN55022, class B (external circuit required, see Figure 1-b)						
ESD	IEC/EN61000-4-2, class B, contact ± 4kV/air ± 8kV						
radiated immunity	IEC/EN61000-4-3, class A, 10V/m						
EFT/burst	IEC/EN61000-4-4, class B, \pm 2kV (external circ	cuit required, see F	igure 1-a)				
surge	IEC/EN61000-4-5, class B, ± 2kV (external circ	cuit required, see F	igure 1-a)				
conducted immunity	IEC/EN61000-4-6, class A, 3 Vr.m.s						
voltage dips & interruptions	IEC/EN61000-4-29, class B, 0%-70%	-					
MTBF	as per MIL-HDBK-217F @ 25°C	1,000,000			hours		
RoHS	2011/65/EU						

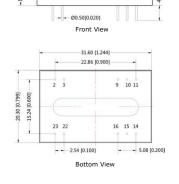
ENVIRONMENTAL

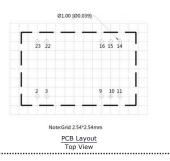
parameter	conditions/description	min	typ	max	units
operating temperature	see derating curve	-40		105	°C
storage temperature		-55		125	°C
storage humidity	non-condensing	5		95	%
temperature rise	at full load, Ta=25°C		25		°C

SOLDERABILITY

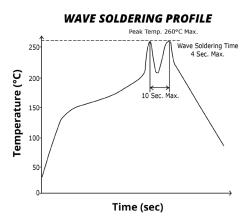
parameter	conditions/description	min	typ	max	units
hand soldering	1.5 mm from case for 10 seconds			300	°C
wave soldering	see wave soldering profile			260	°C

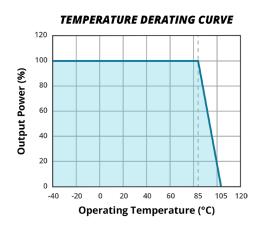
MECHANICAL

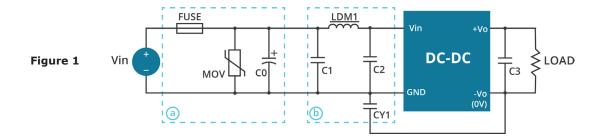

parameter	conditions/description	min	typ	max	units
dimensions	31.60 x 20.30 x 10.20 (1.244 x 0.799 x 0.402 inch)				mm
case material	plastic (UL94-V0)				
weight			14		g


MECHANICAL DRAWING

units: mm[inch] tolerance: ±0.50[±0.020]


pin section tolerance: $\pm 0.10[\pm 0.004]$


PIN CONNECTIONS					
PIN	Single Output	Dual Output			
2, 3	GND	GND			
9	NC	0V			
10,15	NC	NC			
11	NC	-Vo			
14	+Vo	+Vo			
16	0V	0V			
22, 23	Vin	Vin			
NC: No Connec	ction				



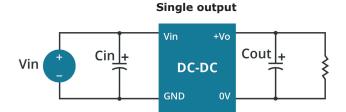
DERATING CURVES

EMC RECOMMENDED CIRCUIT

Ta	ble	1

	Recommended external circuit components						
Vin (Vdc)	5	12	24	48			
FUSE	choo	ose according to p	oractical input cur	rent			
MOV		S14K25	S14K35	S14K60			
C0	1000µF	1000µF	330µF/50V	330µF/100V			
C1	4.7μF/50V	4.7μF/50V	4.7μF/50V	4.7µF/100V			
LDM1	12µH	12µH	12µH	12µH			
C2	4.7µF/50V	4.7µF/50V	4.7µF/50V	4.7µF/100V			
C3	10μF	10µF	10μF	10μF			
CY1	1nF/3kV	1nF/3kV	1nF/3kV	1nF/3kV			

APPLICATION NOTES


Output load requirement

To ensure this module can operate efficiently and reliably, the minimum output load may not be less than 5% of the full load during operation. If the actual output power is low, connect a resistor at the output end in parallel to increase the load.

Recommended circuit

This series has been tested according to the following recommended testing circuit before leaving the factory. This series should be tested under load (see Figure 2 & Table 2). If you want to further decrease the input/output ripple, you can increase the capacitance accordingly or choose capacitors with low ESR. However, the capacitance of the output filter capacitor must be appropriate. If the capacitance is too high, a startup problem might arise. For every channel of the output, to ensure safe and reliable operation, the maximum capacitance must be less than the maximum capacitive load (see Table 3).

Figure 2

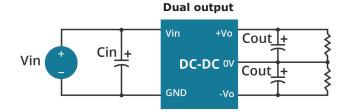


Table 2

Vin (Vdc)	Cin (µF)	Cout (µF)
5	100	10
12	100	10
24	10~47	10
48	10~47	10

Table 3

Single Vout (Vdc)	Max. Capacitive Load (μF)	Dual Vout (Vdc)	Max. Capacitive Load¹ (μF)
3.3	4700	3.3	4700
5	4700	5	2200
12	2700	9	2000
15	2200	12	1800
24	1800	15	1000

Note: 1. For each output.

Input Current

When it is used in an unregulated condition, make sure that the input fluctuations and ripple voltage do not exceed the module standard. Refer to Figure 3 and Table 4 for the startup current of this dc-dc module.

Figure 3

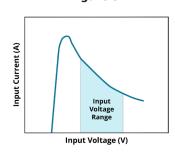


Table 4

Vin (Vdc)	Ip (mA)
5	1400
12	620
24	310
48	150

^{1.} Minimum load shouldn't be less than 5%, otherwise ripple may increase dramatically. Operation under minimum load will not damage the converter, however, they may Note: not meet all specifications listed.

^{2.} Maximum capacitive load is tested at input voltage range and full load.

^{3.} All specifications are measured at Ta=25°C, humidity<75%, nominal input voltage and rated output load unless otherwise specified.

REVISION HISTORY

rev.	description	date
1.0	initial release	03/19/2013
1.01	added models, added UL approval to model, updated datasheet	08/12/2015
1.02	added isolation capacitance	01/15/2020
1.03	safeties updated in features and safety approvals line	01/15/2021
1.04	derating curve and circuit figures updated	07/20/2021
1.05	CE certification updated for 5, 12, & 24V models	01/09/2023
1.06	discontinued model PVB3-D48-D3-D	09/27/2023

The revision history provided is for informational purposes only and is believed to be accurate.

Headquarters 20050 SW 112th Ave. Tualatin, OR 97062 **800.275.4899**

Fax 503.612.2383 **cui**.com techsupport@cui.com

CUI offers a two (2) year limited warranty. Complete warranty information is listed on our website.

CUI reserves the right to make changes to the product at any time without notice. Information provided by CUI is believed to be accurate and reliable. However, no responsibility is assumed by CUI for its use, nor for any infringements of patents or other rights of third parties which may result from its use.