

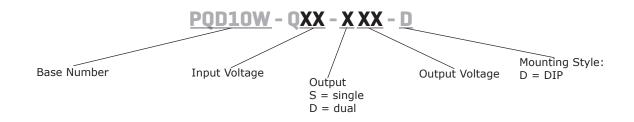
date 03/13/2023

page 1 of 6

SERIES: PQD10W-D | DESCRIPTION: DC-DC CONVERTER

FEATURES

- ultrawide 4:1 input range
- dual positive output with asymmetrical options
- industry standard pinout
- 1500 Vdc isolation
- input under-voltage protection
- output short circuit, over current, and over-voltage protection
- wide operating temp: -40°C to +85°C
- EN 62368 approved



MODEL		put Itage	output voltage Vo1/Vo2	CI	utput urrent o1/Vo2	output power	ripple & noise¹	effici	ency ²
	typ (Vdc)	range (Vdc)	(Vdc)	min (mA)	max (mA)	max (W)	max (mVp-p)	min (%)	typ (%)
PQD10W-Q48-D55-D	48	18~75	5/5	0/0	1000/1000	10	150	81	84
PQD10W-Q48-D512-D	48	18~75	5/12	0/0	1000/417	10	150	82	84
PQD10W-Q48-D524-D	48	18~75	5/24	0/0	1000/209	10	150	82	84

Notes:

PART NUMBER KEY

^{1.} From $5 \sim 100\%$ load, nominal input, 20 MHz bandwidth oscilloscope, with 10 μ F tantalum and 1 μ F ceramic capacitors on the output. From $0 \sim 5\%$ load, ripple and noise is <5% Vo.

ripple and noise is $<\!5\%$ Vo. 2. Measured at nominal input voltage and rated output load.

INPUT

parameter	conditions/description	min	typ	max	units
operating input voltage		18	48	75	Vdc
start-up voltage				18	Vdc
surge voltage	for maximum of 1 second	-0.7		100	Vdc
current	full load / no load, nominal input voltage		248/4	258/10	mA
filter	Pi filter				
CTRL ³	module on (CTRL open or puled high $3.5\sim12$ Vdc) module off (CTRL puled low or to gnd $0\sim1.2$ Vdc)				

Note 3: CTRL is referenced to GND

OUTPUT

parameter	conditions/description	min	typ	max	units
	5 V output			1,000	μF
maximum capacitive load	12 V output			470	μF
•	24 V output			100	μF
voltago accuracy	0% to full load, Vo1		±1	±3	%
voltage accuracy	input voltage, any balanced load, Vo2		±3	±6	%
	from low line to high line, full load				
line regulation	Vo1		±0.3	±0.5	%
	Vo2		±2	±3	%
	from 10% to full load, dual output, balanced power				
load regulation	Vo1		±0.5	±1	%
	Vo2		±3	±6	%
switching frequency	PWM mode		300		kHz
transient recovery time	25% load step change, nominal input voltage		300	500	μs
transient response deviation	25% load step change, nominal input voltage		±5	±8	%
temperature coefficient	at full load			±0.03	%/°C

PROTECTIONS

parameter	conditions/description	min	typ	max	units
over voltage protection		110		160	%Vo
over current protection		110	150	200	%
short circuit protection	continuous, self recovery				
input under voltage protection	n	12	15.5		Vdc

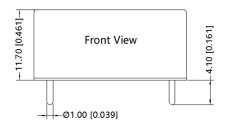
SAFETY AND COMPLIANCE

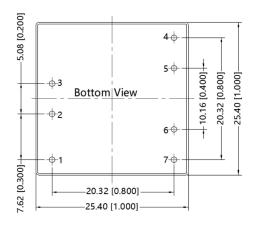
parameter	conditions/description	min	typ	max	units		
isolation voltage	input to output for 1 minute at 1 mA output to output for 1 minute at 1 mA	1,500 500			Vdc Vdc		
isolation resistance	input to output at 500 Vdc	1,000			MΩ		
isolation capacitance	input to output, 100 kHz / 0.1 V		1,000		pF		
safety approvals	EN/IEC 62368						
EMI/EMC	EN 55032: 2015 Class B, EN 55024: 2010+A1: 2015 (see recommended circuit)						
ESD	IEC/EN61000-4-2, Contact ±4KV / Air ±6KV, perf. Criteria B						
radiated immunity	IEC/EN61000-4-3, 10V/m, perf. Criteria A						
EFT/burst	IEC/EN61000-4-4, ±2KV (see recommended circuit), perf. Criteria B						
surge	IEC/EN61000-4-5, line to line ±2KV (see recommended circuit), perf. Criteria B						
conducted immunity	IEC/EN61000-4-6, 10 Vr.m.s, perf. Criteria A						
MTBF	as per MIL-HDBK-217F, 25°C	1000			K hours		
RoHS	yes						

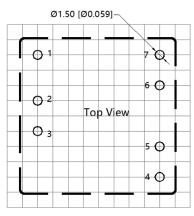
ENVIRONMENTAL

parameter	conditions/description	min	typ	max	units
operating temperature	see derating curve	-40		85	°C
storage temperature		-55		125	°C
storage humidity	non-condensing	5		95	%
vibration	10-150Hz		5		G

parameter	conditions/description	min	typ	max	units
dimensions	25.40 x 25.40 x 11.70 [1.000 x 1.000 x 0.461 inch]				mm
case material	aluminum alloy				
weight			13		g

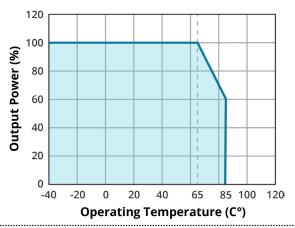

MECHANICAL DRAWING


units: mm [inch]

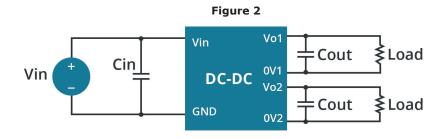

tolerance: $\pm 0.50[\pm 0.020]$

pin diameter tolerance: $\pm 0.10[\pm 0.004]$

PIN Out				
PIN	Function			
1	Ctrl			
2	GND			
3	Vin			
4	+Vo2			
5	0V2			
6	0V1			
7	+Vo1			



Note:Grid 2.54*2.54mm


DERATING CURVE

TEMPERATURE DERATING CURVE

APPLICATION CIRCUIT

All the DC-DC converters of this series are tested before delivery using the recommended circuit shown in Fig. 2. Input and/or output ripple can be further reduced by appropriately increasing the input & output capacitor values Cin and Cout and/or by selecting capacitors with a low ESR (equivalent series resistance). Also make sure that the capacitance is not exceeding the max. capacitive load value of the product.

Vout Cin Cout (Vdc) (µF) (μF) 5 100 100 12 100 22 24 100 22

Table 1

EMC RECOMMENDED CIRCUIT

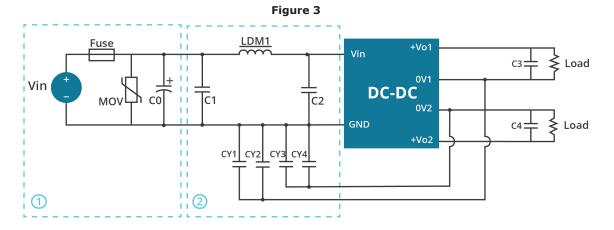


Table 2

Recommended External Circuit Components				
Model	Vin: 48V			
FUSE	Choose according to actual input current			
MOV	S14K60			
C0	330μF/100V			
C1/C2	4.7μF/100V			
C3/C4	Refer to the Cout in Fig.2			
LDM1	15uH			
CY1, CY2, CY3, CY4	2.2nF/2000V			

REVISION HISTORY

rev.	description	date
1.0	initial release	06/29/2020
1.01	derating curve and circuit figures updated	07/22/2021
1.02	max input voltage updated	03/13/2023

The revision history provided is for informational purposes only and is believed to be accurate.

Headquarters 20050 SW 112th Ave. Tualatin, OR 97062 800.275.4899

Fax 503.612.2383 cui.com techsupport@cui.com

CUI offers a two (2) year limited warranty. Complete warranty information is listed on our website.

CUI reserves the right to make changes to the product at any time without notice. Information provided by CUI is believed to be accurate and reliable. However, no responsibility is assumed by CUI for its use, nor for any infringements of patents or other rights of third parties which may result from its use.