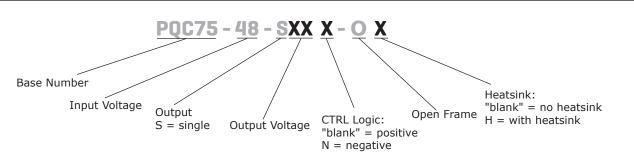


SERIES: PQC75-0 **DESCRIPTION:** DC-DC CONVERTER

FEATURES

- 75 W isolated output
- industry standard DOSA 1/16 brick
- 2:1 input range (36 ~75 Vdc)
- -40 ~ 85°C operating temperature
- over-current, input under-voltage, over-voltage and output short-circuit protection
- remote on/off control
- EN/BS EN/UL 62368 certified



MODEL		nput oltage	output voltage		ıtput rrent	output power	ripple and noise ¹	efficiency ²
	typ (Vdc)	range (Vdc)	(Vdc)	min (mA)	max (mA)	max (W)	max (mVp-p)	typ (%)
PQC75-48-S5-0	48	36~75	5	0	15,000	75	150	92
PQC75-48-S12-0	48	36~75	12	0	6,250	75	150	92
PQC75-48-S28-O	48	36~75	28	0	2,678	75	150	90

 Ripple and noise are measured at 20 MHz BW, 5%~100% load by "tip & barrel" method. Ripple & Noise at <5% load is 5%Vo max. Ripple & Noise at 28V output is 2%Vo max.
 Efficiency is measured at nominal input voltage and rated output load. Notes:

3. All specifications are measured at Ta=25°C, humidity<75%, nominal input voltage and rated output load unless otherwise specified.

PART NUMBER KEY

INPUT

conditions/description		min	typ	max	units
		36	48	80	Vdc
at nominal input volta	at nominal input voltage		1,669/10	1,776/30	mA
at nominal input volta	at nominal input voltage		30		mA
				36	Vdc
		26	29		Vdc
at nominal input voltage & constant resistance load				100	ms
for maximum of 1 see	for maximum of 1 second			80	Vdc
positivo logio	module ON: CTRL pin open or	· pulled hig	h (4.5~12Vdc))	
positive logic	module OFF: CTRL pin pulled lo				
nontivo logio	module ON: CTRL pin pulled low to GND (0~1.2Vdc)				
module OFF: CTRL pin op		or pulled high	gh (4.5~12Vdc	:)	
CTRL pin pulled low			3	10	mA
Pi filter					
	at nominal input volta at nominal input volta at nominal input volta for maximum of 1 sec positive logic negative logic CTRL pin pulled low	at nominal input voltage at nominal input voltage at nominal input voltage at nominal input voltage & constant resistance load for maximum of 1 second positive logic module ON: CTRL pin open or module OFF: CTRL pin pulled negative logic module ON: CTRL pin pulled I module OFF: CTRL pin open or module ON: CTRL pin pulled CTRL pin pulled low	36 at nominal input voltage at nominal input voltage 26 at nominal input voltage & constant resistance load for maximum of 1 second for maximum of 1 second positive logic module ON: CTRL pin open or pulled hig module OFF: CTRL pin pulled low to GND negative logic module OFF: CTRL pin pulled low to GND module OFF: CTRL pin open or pulled hig module OFF: CTRL pin open or pulled hig	36 48 at nominal input voltage 1,669/10 at nominal input voltage 30 26 29 at nominal input voltage & constant resistance load -0.7 for maximum of 1 second -0.7 positive logic module ON: CTRL pin open or pulled high (4.5~12Vdc) module OFF: CTRL pin pulled low to GND (0~1.2Vdc) module OFF: CTRL pin pulled low to GND (0~1.2Vdc) negative logic module OFF: CTRL pin open or pulled high (4.5~12Vdc) module OFF: CTRL pin pulled low to GND (0~1.2Vdc) module OFF: CTRL pin pulled low to GND (0~1.2Vdc) CTRL pin pulled low 3	36 48 80 at nominal input voltage 1,669/10 1,776/30 at nominal input voltage 30 30 26 29 36 at nominal input voltage & constant resistance load 100 for maximum of 1 second -0.7 80 positive logic module ON: CTRL pin open or pulled high (4.5~12Vdc) 80 module OFF: CTRL pin pulled low to GND (0~1.2Vdc) module OFF: CTRL pin pulled low to GND (0~1.2Vdc) megative logic module OFF: CTRL pin pulled low to GND (0~1.2Vdc) 100 CTRL pin pulled low 3 10

Notes: 3. The CTRL pin voltage is referenced to input GND.

OUTPUT

parameter	conditions/description	min	typ	max	units
	5 Vdc output			6,000	μF
maximum capacitive load ⁴	12 Vdc output			2,000	μF
	28 Vdc output			1,000	μF
line regulation ⁵	full load, input voltage from low to high		±0.2	±0.5	%
load regulation	5% to 100% load		±0.5	±0.75	%
voltage accuracy	5% to 100% load		±1	±3	%
switching frequency ⁶	PWM mode		300		kHz
transient recovery time	25% load step change, nominal input		200	500	μs
	25% load step change, nominal input				
transient response deviation	5 Vdc output voltage		±3	±8	%
	all other outputs		±3	±7	%
temperature coeffecient	full load			±0.03	%/°C
trim		90		110	%
remote sense compensation				105	%

Notes:

.....

The maximum capacitive load offered were tested at input voltage range and full load.
 Line regulation for 0%~100% load is ±3%.
 Switching frequency is measured at full load. The module reduces the switching frequency for light load (below 50%) efficiency improvement.

PROTECTIONS

parameter	conditions/description	min	typ	max	units
over voltage protection		110	125	160	%
over current protection		110	140	190	%
short circuit protection	auto recovery, continuous				

SAFETY AND COMPLIANCE

parameter	conditions/description	min	typ	max	units
isolation voltage	input to output for 1 minute at 1 mA max.	1,500			Vdc
isolation resistance	input to output at 500 Vdc	1,000			MΩ
isolation capacitance	input to output at 100kHz/0.1V	put at 100kHz/0.1V 1,000		pF	
vibration	10-150Hz, 10G, 30min. along X, Y and Z				

.....

SAFETY AND COMPLIANCE (CONTINUED)

parameter	conditions/description	min	typ	max	units
safety approvals	certified 62368: EN, BS EN, UL	certified 62368: EN, BS EN, UL			
conducted emissions	CISPR32/EN55032 CLASS A (see Fig.2 for recommended circuit) CISPR32/EN55032 CLASS B (see Fig.3 & 4 for recommended circuit)				
radiated emissions	CISPR32/EN55032 CLASS A (see Fig.2 for recommended circuit) CISPR32/EN55032 CLASS B (see Fig.3 & 4 for recommended circuit)				
ESD	IEC/EN61000-4-2 Contact ±6kV/Air ±8KV, perf. Criteria B				
radiated immunity	IEC/EN61000-4-3 10V/m, perf. Criteria B				
EFT/burst	IIEC/EN61000-4-4 100kHz ±2kV (see Fig. 2 for recommended circuit), perf. Criteria B				
surge	IEC/EN61000-4-5 line to line ±2kV (see Fig. 2 for recommended circuit), perf. Criteria B				
conducted immunity	IEC/EN61000-4-6 3 Vrms, perf. Criteria B	}			
MTBF	as per MIL-HDBK-217F at 25°C	500,000			hours
RoHS	yes				

ENVIRONMENTAL

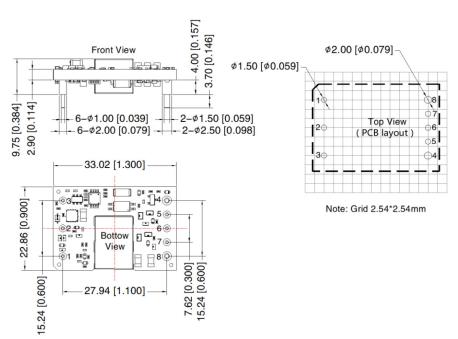
parameter	conditions/description	min	typ	max	units
operating temperature	see derating curve	-40		85	°C
storage temperature		-55		125	°C
storage humidity	non-condensing	5		95	%

MECHANICAL

.....

parameter	conditions/description		min	typ	max	units
	5 & 12 Vdc output model no heatsink	33.02 x 22.86 x 9	9.75 [1.300 >	x 0.900 x	0.384 inch]	mm
dimensions	5 & 12 Vdc output model with heatsink	33.02 x 22.86 x 1	12.7 [1.300 >	x 0.900 x	0.500 inch]	mm
	28 Vdc output model no heatsink	33.02 x 22.86 x 3	10.05 [1.300	x 0.900	x 0.396 inch]	mm
	28 Vdc output model with heatsink	33.02 x 22.86 x 3	13.0 [1.300 >	x 0.900 x	0.512 inch]	mm
weight	without heatsink			14.6		g
weight	with heatsink			21.4		g
cooling method	natural convection or forced air					

.....

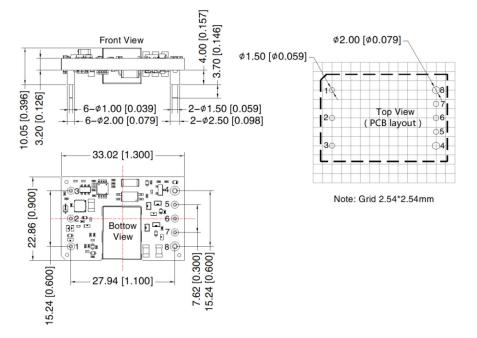

MECHANICAL DRAWING

5 VDC & 12 VDC OUTPUT MODEL WITHOUT HEATISINK

units: mm[inch] tolerance: ±0.50[±0.020] pin section tolerance: ±0.10[±0.004] pin 1,2,3,5,6,7: Ø1.0mm pin 4,8: Ø1.5mm

Note: The layout of the device is for reference only, please refer to the actual product.

PIN CO	PIN CONNECTIONS		
PIN	Function		
1	+Vin		
2	CTRL		
3	-Vin		
4	0V		
5	Sense-		
6	Trim		
7	Sense+		
8	+Vo		

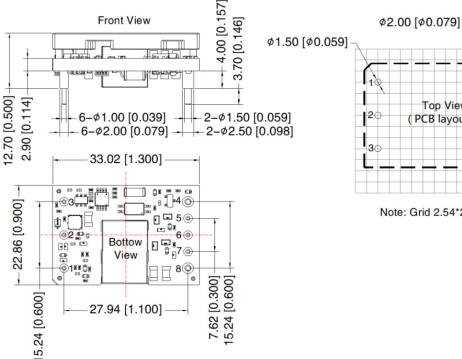


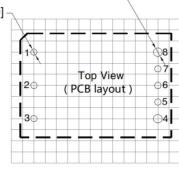
28 VDC OUTPUT MODEL WITHOUT HEATISINK

units: mm[inch] tolerance: ±0.50[±0.020] pin section tolerance: ±0.10[±0.004] pin 1,2,3,5,6,7: Ø1.0mm pin 4,8: Ø1.5mm

Note: The layout of the device is for reference only, please refer to the actual product.

PIN CO	PIN CONNECTIONS		
PIN	Function		
1	+Vin		
2	CTRL		
3	-Vin		
4	0V		
5	Sense-		
6	Trim		
7	Sense+		
8	+Vo		

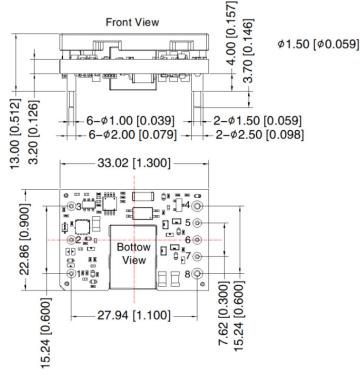

MECHANICAL DRAWING (CONTINUED)

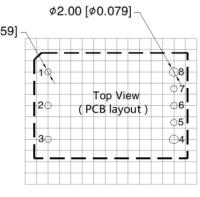

5 VDC & 12 VDC OUTPUT MODEL WITH HEATISINK

units: mm[inch] tolerance: $\pm 0.50[\pm 0.020]$ pin section tolerance: $\pm 0.10[\pm 0.004]$ pin 1,2,3,5,6,7: Ø1.0mm pin 4,8: Ø1.5mm

Note: The layout of the device is for reference only, please refer to the actual product.

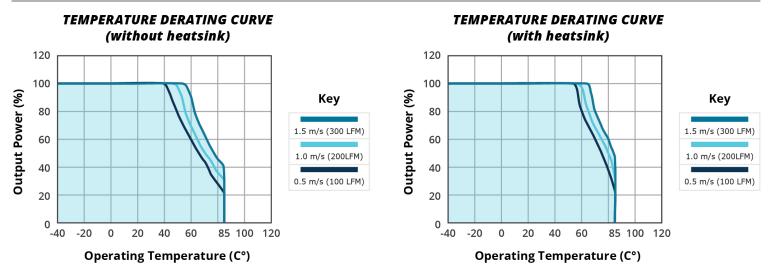
PIN CONNECTIONS		
PIN	Function	
1	+Vin	
2	CTRL	
3	-Vin	
4	0V	
5	Sense-	
6	Trim	
7	Sense+	
8	+Vo	

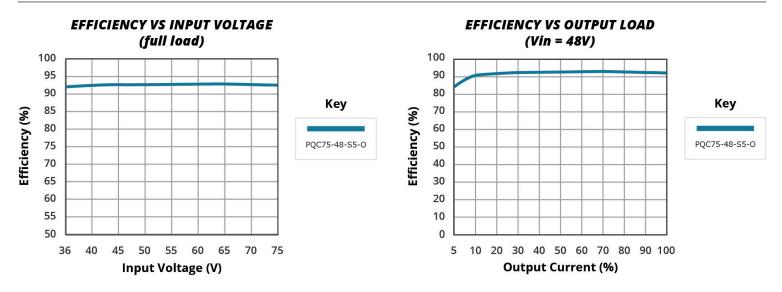

Note: Grid 2.54*2.54mm


28 VDC OUTPUT MODEL WITH HEATISINK

units: mm[inch] tolerance: $\pm 0.50[\pm 0.020]$ pin section tolerance: $\pm 0.10[\pm 0.004]$ pin 1,2,3,5,6,7: Ø1.0mm pin 4,8: Ø1.5mm

Note: The layout of the device is for reference only, please refer to the actual product.


PIN CONNECTIONS		
PIN	Function	
1	+Vin	
2	CTRL	
3	-Vin	
4	0V	
5	Sense-	
6	Trim	
7	Sense+	
8	+Vo	


Note: Grid 2.54*2.54mm

DERATING CURVE

EFFICIENCY CURVES

.....

APPLICATION NOTES

Please ensure that at least a 100μ F electrolytic capacitors is connected at the input in order to ensure adequate voltage surge suppression and protection.

Input and/or output ripple can be further reduced by appropriately increasing the input & output capacitor values Cin and Cout and/or by selecting capacitors with a low ESR (equivalent series resistance). Also make sure that the capacitance is not exceeding the specified max. capacitive load value of the product.

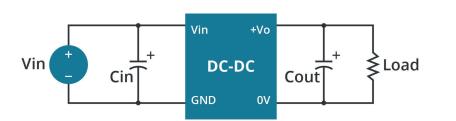
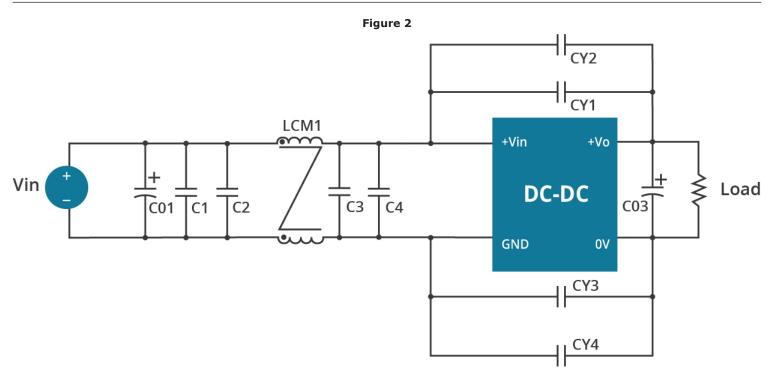
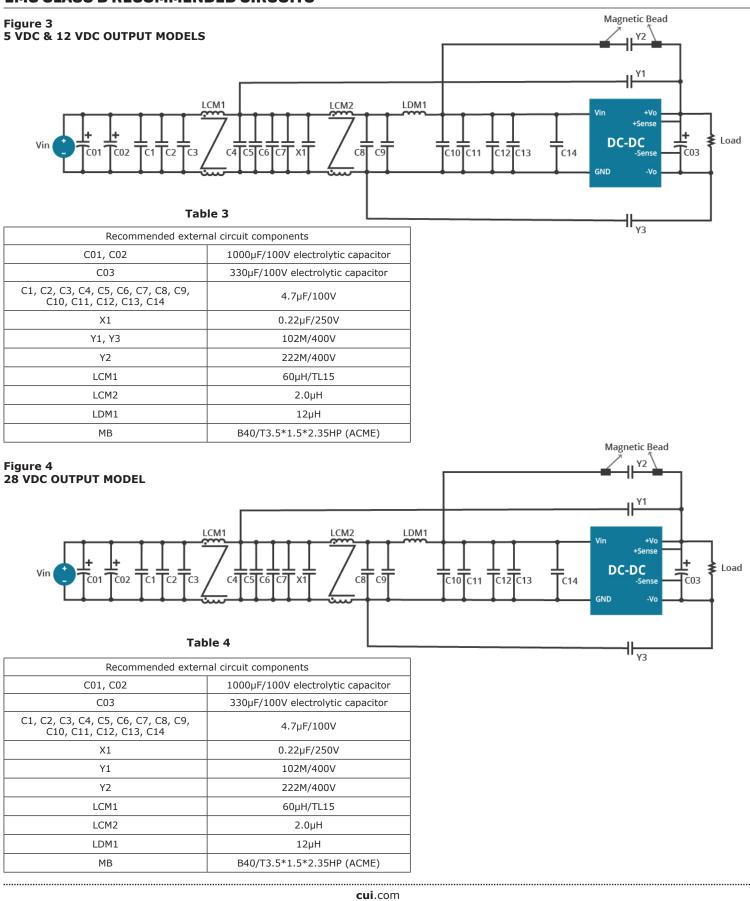



Figure 1

Vout (Vdc)	Cin (µF/V)	Cout (µF/V)
5		
12	100µF/100V	330µF/63V
28		

Table 1

EMC CLASS A RECOMMENDED CIRCUIT



Notes: For EMC tests we use Part 2 in Fig. 2 for immunity and part 1 for emissions test. Selecting based on needs.

Table	e 2
-------	-----

Recommended external circuit components		
C01	2000µF/100V electrolytic capacitor	
C03	330µF/100V electrolytic capacitor	
C1, C2, C3, C4	4.7µF/100V	
CY1, CY2, CY3, CY4	222M/400V	
LCM1	2.0mH	

EMC CLASS B RECOMMENDED CIRCUITS

RIPPLE AND NOISE

All the DC-DC converters of this series are tested before delivery using the recommended circuit shown in Fig. 5

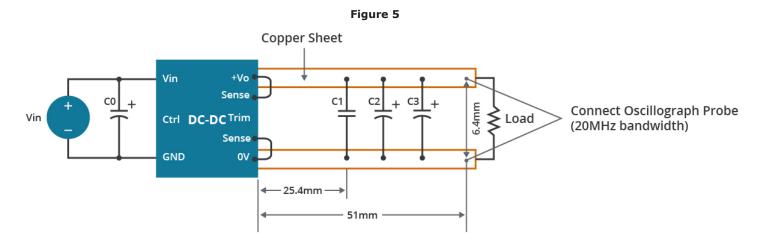
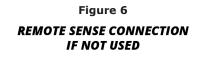
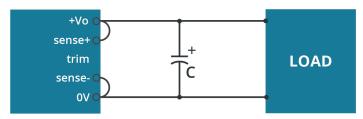
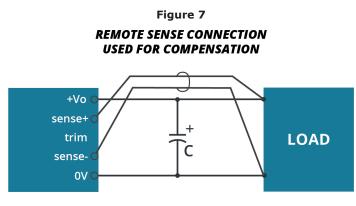




Table 5

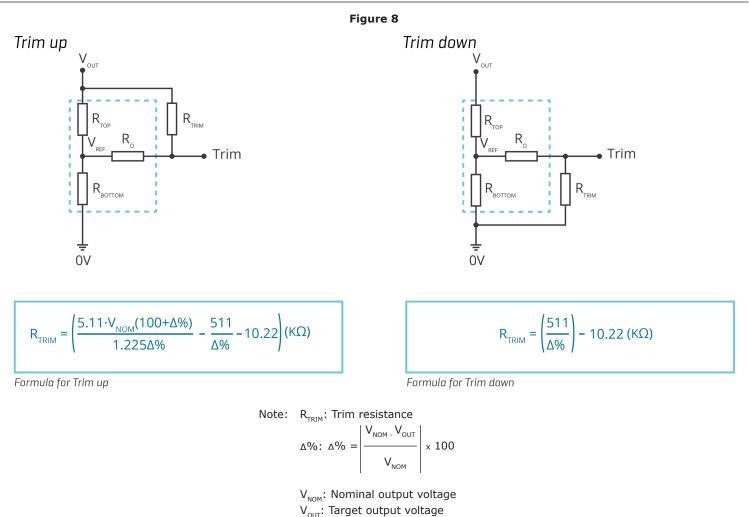
	Vout (Vdc)	C0 (µF/V)	C1 (µF/V)	C2 (µF/V)	C3 (µF/V)
	5				
Γ	12	100µF/100V	1µF/50V	10µF/50V	330µF/63V
	28				

REMOTE SENSE APPLICATION

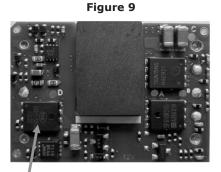


Note: 1. Lines must be kept as short as possible.

.....


- 2. If the sense function is not used for remote regulation the user must connect the +Sense to + Vo and -Sense
- to 0V at the DC-DC converter pins and will compensate for voltage drop across pins only.
 The connections between Sense lines and their respective power lines must be kept as short as possible, otherwise they may be picking up noise, interference and/or causing unstable operation of the power module.

- Note: 1. In cables and discrete wiring applications, twisted pair or other techniques should be implemented. 2. Using remote sense with long wires may cause unstable output, please contact technical support if long wires must be used.
 - 3. PCB-tracks or cables/wires for Remote Sense must be kept as short as possible. Twisted pair or shielded wires are
 - suggested for remote compensation and must be kept as short as possible. 4. We recommend using adequate cross section for PCB-track layout and/or cables to connect the power supply module to the load in order to keep the voltage drop below 0.3V and to make sure the power supply's output voltage remains within the specified range.
 - Note that large wire impedance may cause oscillation of the output voltage and/or increased ripple. Consult technical support or factory for further advice of sense operation.


.....

APPLICATION NOTES

THERMAL TEST POINT

The thermal element is installed on the top surface of the product and dissipates heat to the surrounding environment through conduction, convection and radiation. Sufficient heat dissipation conditions should be provided to ensure the reliable operation of the product. By measuring the temperature of the thermal test point in Fig. 9, it can be verified whether the heat dissipation conditions are met.

.....

1. The temperature of the negative logic series Thermal Test Point 1 cannot exceed 130°C. Othewise, the product will trigger the protection due to excessive temperature and can not work properly.

2. Positive logic series without over-temperature protection function, the temperature of Thermal Test Point 1 cannot exceed 130°C. Othewise, the product will be damaged due to excessive temperature.

.....

REVISION HISTORY

rev.	description	date
1.0	initial release	07/21/2023

The revision history provided is for informational purposes only and is believed to be accurate.

a bel group

Headquarters 20050 SW 112th Ave. Tualatin, OR 97062 800.275.4899

Fax 503.612.2383 cui.com techsupport@cui.com

CUI offers a two (2) year limited warranty. Complete warranty information is listed on our website.

.....

CUI reserves the right to make changes to the product at any time without notice. Information provided by CUI is believed to be accurate and reliable. However, no responsibility is assumed by CUI for its use, nor for any infringements of patents or other rights of third parties which may result from its use.

.....

CUI products are not authorized or warranted for use as critical components in equipment that requires an extremely high level of reliability. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.